Spaces:
Runtime error
Runtime error
import streamlit as st | |
from bs4 import BeautifulSoup | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import pickle | |
import torch | |
import io | |
class CPU_Unpickler(pickle.Unpickler): | |
def find_class(self, module, name): | |
if module == 'torch.storage' and name == '_load_from_bytes': | |
return lambda b: torch.load(io.BytesIO(b), map_location='cpu') | |
else: return super().find_class(module, name) | |
def get_hugging_face_model(): | |
model_name = "mchochlov/codebert-base-cd-ft" | |
hf = HuggingFaceEmbeddings(model_name=model_name) | |
return hf | |
def get_db(): | |
with open("codesearchdb.pickle", "rb") as f: | |
db = CPU_Unpickler(f).load() | |
return db | |
def get_similar_links(query, db, embeddings): | |
embedding_vector = embeddings.embed_query(query) | |
docs_and_scores = db.similarity_search_by_vector(embedding_vector) | |
hrefs = [] | |
for docs in docs_and_scores: | |
html_doc = docs.page_content | |
soup = BeautifulSoup(html_doc, 'html.parser') | |
href = [a['href'] for a in soup.find_all('a', href=True)] | |
hrefs.append(href) | |
links = [] | |
for href_list in hrefs: | |
for link in href_list: | |
links.append(link) | |
return links | |
embedding_vector = get_hugging_face_model() | |
db = get_db() | |
st.title("π DSASearch Engine π€ ") | |
text_input = st.text_input("Enter some text") | |
button = st.button("Find Similar Questions on Leetcode") | |
if text_input: | |
query = text_input | |
answer = get_similar_links(query, db, embedding_vector) | |
for link in answer: | |
st.write(link) | |
st.balloons() | |
else: | |
st.info("Please Input Valid Text") | |
st.markdown(""" | |
### Created by Ashwin Rachha. | |
Source Data : https://github.com/AshwinRachha/LeetCode-Solutions | |
Medium Blog : https://medium.com/@ashwin_rachha/querying-a-code-database-to-find-similar-coding-problems-using-langchain-814730da6e6d | |
""") | |