Aastha
Resolved merge conflict in app.py
ddd99dd
raw
history blame
16.7 kB
import gradio as gr
import random
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
import ast
import torch
from efficientnet_pytorch import EfficientNet
from torchvision import transforms
from PIL import Image
import gradio as gr
from super_gradients.training import models
class Kosmos2:
def __init__(self):
self.colors = [
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
(255, 0, 0),
]
self.color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(self.colors)
}
self.ckpt = "ydshieh/kosmos-2-patch14-224"
self.model = AutoModelForVision2Seq.from_pretrained(self.ckpt, trust_remote_code=True).to("cuda")
self.processor = AutoProcessor.from_pretrained(self.ckpt, trust_remote_code=True)
def is_overlapping(self, rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_boxes_on_image(self, image, entities, show=False, save_path=None, entity_index=-1):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(entities) == 0:
return image
indices = list(range(len(entities)))
if entity_index >= 0:
indices = [entity_index]
# Not to show too many bboxes
entities = entities[:len(self.color_map)]
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 1
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = self.colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
color_id += 1
if entity_idx not in indices:
continue
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
while self.is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()
return pil_image
def generate_predictions(self, image_input, text_input):
# Save the image and load it again to match the original Kosmos-2 demo.
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
user_image_path = "/tmp/user_input_test_image.jpg"
image_input.save(user_image_path)
# This might give different results from the original argument `image_input`
image_input = Image.open(user_image_path)
if text_input == "Brief":
text_input = "<grounding>An image of"
elif text_input == "Detailed":
text_input = "<grounding>Describe this image in detail:"
else:
text_input = f"<grounding>{text_input}"
inputs = self.processor(text=text_input, images=image_input, return_tensors="pt")
generated_ids = self.model.generate(
pixel_values=inputs["pixel_values"].to("cuda"),
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
img_features=None,
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
use_cache=True,
max_new_tokens=128,
)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = self.processor.post_process_generation(generated_text)
annotated_image = self.draw_entity_boxes_on_image(image_input, entities, show=False)
color_id = -1
entity_info = []
filtered_entities = []
for entity in entities:
entity_name, (start, end), bboxes = entity
if start == end:
# skip bounding bbox without a `phrase` associated
continue
color_id += 1
# for bbox_id, _ in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
entity_info.append(((start, end), color_id))
filtered_entities.append(entity)
colored_text = []
prev_start = 0
end = 0
for idx, ((start, end), color_id) in enumerate(entity_info):
if start > prev_start:
colored_text.append((processed_text[prev_start:start], None))
colored_text.append((processed_text[start:end], f"{color_id}"))
prev_start = end
if end < len(processed_text):
colored_text.append((processed_text[end:len(processed_text)], None))
return annotated_image, colored_text, str(filtered_entities)
class VehiclePredictor:
def __init__(self, model_path):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.yolo_nas_l = models.get("yolo_nas_l", pretrained_weights="coco")
self.classifier_model = torch.load(model_path)
self.classifier_model = self.classifier_model.to(self.device)
self.classifier_model.eval() # Set the model to evaluation mode
def bounding_boxes_overlap(self, box1, box2):
"""Check if two bounding boxes overlap or touch."""
x1, y1, x2, y2 = box1
x3, y3, x4, y4 = box2
return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1)
def merge_boxes(self, box1, box2):
"""Return the encompassing bounding box of two boxes."""
x1, y1, x2, y2 = box1
x3, y3, x4, y4 = box2
x = min(x1, x3)
y = min(y1, y3)
w = max(x2, x4)
h = max(y2, y4)
return (x, y, w, h)
def save_merged_boxes(self, predictions, image_np):
"""Save merged bounding boxes as separate images."""
processed_boxes = set()
roi = None # Initialize roi to None
for image_prediction in predictions:
bboxes = image_prediction.prediction.bboxes_xyxy
for box1 in bboxes:
for box2 in bboxes:
if np.array_equal(box1, box2):
continue
if self.bounding_boxes_overlap(box1, box2) and tuple(box1) not in processed_boxes and tuple(box2) not in processed_boxes:
merged_box = self.merge_boxes(box1, box2)
roi = image_np[int(merged_box[1]):int(merged_box[3]), int(merged_box[0]):int(merged_box[2])]
processed_boxes.add(tuple(box1))
processed_boxes.add(tuple(box2))
break # Exit the inner loop once a match is found
if roi is not None:
break # Exit the outer loop once a match is found
return roi
# Perform inference on an image
def predict_image(self, image, model):
# First, get the ROI using YOLO-NAS
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
predictions = self.yolo_nas_l.predict(image_np, iou=0.3, conf=0.35)
roi_new = self.save_merged_boxes(predictions, image_np)
if roi_new is None:
roi_new = image_np # Use the original image if no ROI is found
# Convert ROI back to PIL Image for EfficientNet
roi_image = Image.fromarray(cv2.cvtColor(roi_new, cv2.COLOR_BGR2RGB))
# Define the image transformations
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Convert PIL Image to Tensor
roi_image_tensor = transform(roi_image).unsqueeze(0).to(self.device)
with torch.no_grad():
outputs = self.classifier_model(roi_image_tensor)
_, predicted = outputs.max(1)
prediction_text = 'Accident' if predicted.item() == 0 else 'No accident'
return roi_image, prediction_text # Return both the roi_image and the prediction text
def main():
kosmos2 = Kosmos2()
vehicle_predictor = VehiclePredictor('vehicle.pt')
with gr.Blocks(title="Advanced Vehicle Contextualization & Collision Prediction", theme=gr.themes.Base()).queue() as demo:
gr.Markdown(("""
# Models used -
Kosmos-2: Grounding Multimodal Large Language Models to the World
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
YOLO-NAS [[Code]](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
EfficientNet-b0
"""))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Test Image")
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
run_button = gr.Button(label="Run", visible=True)
with gr.Column():
image_output_kosmos = gr.Image(type="pil", label="Kosmos-2 Output Image")
text_output_kosmos = gr.HighlightedText(
label="Generated Description by Kosmos-2",
combine_adjacent=False,
show_legend=True,
).style(color_map=kosmos2.color_map)
image_output_vehicle = gr.Image(type="pil", label="Collision Predictor Output Image", size=(112, 112))
text_output_vehicle = gr.Textbox(label="Collision Predictor Result")
# record which text span (label) is selected
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
# record the current `entities`
entity_output = gr.Textbox(visible=False)
# get the current selected span label
def get_text_span_label(evt: gr.SelectData):
if evt.value[-1] is None:
return -1
return int(evt.value[-1])
# and set this information to `selected`
text_output_kosmos.select(get_text_span_label, None, selected)
# update output image when we change the span (enity) selection
def update_output_image(img_input, image_output, entities, idx):
entities = ast.literal_eval(entities)
updated_image = kosmos2.draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
return updated_image
selected.change(update_output_image, [image_input, image_output_kosmos, entity_output, selected], [image_output_kosmos])
def combined_predictions(img, description_type):
# Kosmos2 predictions
kosmos_image, kosmos_text, entities = kosmos2.generate_predictions(img, description_type)
# VehiclePredictor predictions
vehicle_image, vehicle_text = vehicle_predictor.predict_image(img, vehicle_predictor.classifier_model)
return kosmos_image, kosmos_text, entities, vehicle_image, vehicle_text
run_button.click(fn=combined_predictions,
inputs=[image_input, text_input],
outputs=[image_output_kosmos, text_output_kosmos, entity_output, image_output_vehicle, text_output_vehicle],
show_progress=True, queue=True)
demo.launch(share=True)
if __name__ == "__main__":
main()