File size: 4,455 Bytes
38e75ed
d381527
 
38e75ed
 
d381527
38e75ed
 
d381527
0093ca7
38e75ed
 
 
6395f0c
d381527
 
 
 
5021878
 
d381527
 
 
 
38e75ed
d381527
 
 
38e75ed
d381527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e75ed
 
 
 
 
 
 
 
 
 
 
 
d381527
 
 
c699581
d381527
 
c699581
 
 
d381527
 
c699581
d381527
c699581
d381527
c699581
d381527
 
 
fa2ae63
 
b29b1d2
e0837cd
d381527
 
947d669
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from flask import Flask, request
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaConfig
from transformers import RobertaForSequenceClassification, RobertaTokenizer, RobertaConfig
import torch
from torch import cuda
import gradio as gr
import os
import re

app = Flask(__name__)

ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]

# config = RobertaConfig.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN)
# model = RobertaForSequenceClassification.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN, config = config)

device = 'cuda' if cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("PirateXX/AI-Content-Detector", token= ACCESS_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained("PirateXX/AI-Content-Detector", token= ACCESS_TOKEN)
model.to(device)

# model_name = "roberta-base"
# tokenizer = RobertaTokenizer.from_pretrained(model_name, map_location=torch.device('cpu'))

def text_to_sentences(text):
    clean_text = text.replace('\n', ' ')
    return re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', clean_text)

# function to concatenate sentences into chunks of size 900 or less
def chunks_of_900(text, chunk_size = 900):
    sentences = text_to_sentences(text)
    chunks = []
    current_chunk = ""
    for sentence in sentences:
        if len(current_chunk + sentence) <= chunk_size:
            if len(current_chunk)!=0:
                current_chunk += " "+sentence
            else:
                current_chunk += sentence
        else:
            chunks.append(current_chunk)
            current_chunk = sentence
    chunks.append(current_chunk)
    return chunks
    
def predict(query):
    tokens = tokenizer.encode(query)
    all_tokens = len(tokens)
    tokens = tokens[:tokenizer.model_max_length - 2]
    used_tokens = len(tokens)
    tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
    mask = torch.ones_like(tokens)

    with torch.no_grad():
        logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
        probs = logits.softmax(dim=-1)

    fake, real = probs.detach().cpu().flatten().numpy().tolist()
    return real

def findRealProb(text):
    chunksOfText = (chunks_of_900(text))
    results = []
    for chunk in chunksOfText:
        output = predict(chunk)
        results.append([output, len(chunk)])
    
    ans = 0
    cnt = 0
    for prob, length in results:
        cnt += length
        ans = ans + prob*length
    realProb = ans/cnt
    return {"Real": realProb, "Fake": 1-realProb}, results

demo = gr.Interface(
        fn=findRealProb, 
        inputs="text",
        outputs="json",
         article = "Visit <a href = \"https://www.aiaudiencedetector.org/\">AI Content Detector</a> for better user experience!",
        # interpretation="default",
        examples=["Cristiano Ronaldo is a Portuguese professional soccer player who currently plays as a forward for Manchester United and the Portugal national team. He is widely considered one of the greatest soccer players of all time, having won numerous awards and accolades throughout his career. Ronaldo began his professional career with Sporting CP in Portugal before moving to Manchester United in 2003. He spent six seasons with the club, winning three Premier League titles and one UEFA Champions League title. In 2009, he transferred to Real Madrid for a then-world record transfer fee of $131 million. He spent nine seasons with the club, winning four UEFA Champions League titles, two La Liga titles, and two Copa del Rey titles. In 2018, he transferred to Juventus, where he spent three seasons before returning to Manchester United in 2021. He has also had a successful international career with the Portugal national team, having won the UEFA European Championship in 2016 and the UEFA Nations League in 2019.", "One rule of thumb which applies to everything that we do - professionally and personally : Know what the customer want and deliver. In this case, it is important to know what the organisation what from employee. Connect the same to the KRA. Are you part of a delivery which directly ties to the larger organisational objective. If yes, then the next question is success rate of one’s delivery. If the KRAs are achieved or exceeded, then the employee is entitled for a decent hike."])

demo.launch(show_api=False)