File size: 5,443 Bytes
95f2072
bcfb3b3
 
d7d8cc0
 
bcfb3b3
d7d8cc0
 
f7c6dc5
27c3fda
d7d8cc0
 
 
372d293
bcfb3b3
 
d7d8cc0
bcfb3b3
a240a54
 
bcfb3b3
 
 
 
d7d8cc0
a7553e2
27c3fda
fd64511
 
27c3fda
4bc60b3
c8133e1
27c3fda
 
 
 
44091f5
7b74aa3
 
 
 
27c3fda
 
 
 
 
 
bcfb3b3
d7d8cc0
 
 
 
 
 
 
 
 
 
 
 
b7d5b9c
d7d8cc0
fbb9dbc
61bf30e
 
1e9e4f9
61bf30e
1e9e4f9
61bf30e
1e9e4f9
61bf30e
 
 
 
 
 
 
8db0e68
61bf30e
8db0e68
61bf30e
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa2da8
27c3fda
8181252
b6bdfa9
af1a748
d82f91a
bc70525
03a498a
bc70525
af1a748
8181252
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaConfig
from transformers import RobertaForSequenceClassification, RobertaTokenizer, RobertaConfig
import torch
from torch import cuda
import gradio as gr
import os

import re
app = Flask(__name__)

ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]

# config = RobertaConfig.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN)
# model = RobertaForSequenceClassification.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN, config = config)

device = 'cuda' if cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("PirateXX/AI-Content-Detector", use_auth_token= ACCESS_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained("PirateXX/AI-Content-Detector", use_auth_token= ACCESS_TOKEN)
model.to(device)

# model_name = "roberta-base"
# tokenizer = RobertaTokenizer.from_pretrained(model_name, map_location=torch.device('cpu'))

    
def text_to_sentences(text):
    clean_text = text.replace('\n', ' ')
    return re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', clean_text)

# function to concatenate sentences into chunks of size 900 or less
def chunks_of_900(text, chunk_size = 900):
    sentences = text_to_sentences(text)
    chunks = []
    current_chunk = ""
    for sentence in sentences:
        if len(current_chunk + sentence) <= chunk_size:
            if len(current_chunk)!=0:
                current_chunk += " "+sentence
            else:
                current_chunk += sentence
        else:
            chunks.append(current_chunk)
            current_chunk = sentence
    chunks.append(current_chunk)
    return chunks
    
def predict(query):
    tokens = tokenizer.encode(query)
    all_tokens = len(tokens)
    tokens = tokens[:tokenizer.model_max_length - 2]
    used_tokens = len(tokens)
    tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
    mask = torch.ones_like(tokens)

    with torch.no_grad():
        logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
        probs = logits.softmax(dim=-1)

    fake, real = probs.detach().cpu().flatten().numpy().tolist()
    return real

def findRealProb(data):
    with app.app_context():
        if data is None or len(data) == 0:
            return ({'error': 'No query provided'})
        if len(data) > 9400:
            return ({'error': 'Cannot analyze more than 9400 characters!'})
        if len(data.split()) > 1500:
            return ({'error': 'Cannot analyze more than 1500 words'})
        
        # return {"Real": predict(data)}
        chunksOfText = (chunks_of_900(data))
        results = []
        for chunk in chunksOfText:
            outputv1 = predict(chunk)
            # outputv2 = predict(chunk, modelv2, tokenizerv2)
            label = "AI"
            if(outputv1>=0.5):
                label = "Human"
            results.append({"Text":chunk, "Label": label, "Confidence":(outputv1)})    
        ans = 0
        cnt = 0
        for result in results:
            length = len(result["Text"])
            confidence = result["Confidence"]
            cnt += length
            ans = ans + (confidence)*(length)
        realProb = ans/cnt
        label = "AI"
        if realProb > 0.7:
            label = "Human"
        elif realProb > 0.3 and realProb < 0.7:
            label = "Might be AI"
        return ({"Human": realProb, "AI": 1-realProb, "Label": label,  "Chunks": results})

demo = gr.Interface(
        fn=findRealProb, 
        inputs=gr.Textbox(placeholder="Copy and paste here..."), 
         article = "Visit <a href = \"https://ai-content-detector.online/\">AI Content Detector</a> for better user experience!",
        outputs = gr.outputs.JSON(),
        # interpretation = "default",
        examples = ["Cristiano Ronaldo is a Portuguese professional soccer player who currently plays as a forward for Manchester United and the Portugal national team. He is widely considered one of the greatest soccer players of all time, having won numerous awards and accolades throughout his career. Ronaldo began his professional career with Sporting CP in Portugal before moving to Manchester United in 2003. He spent six seasons with the club, winning three Premier League titles and one UEFA Champions League title. In 2009, he transferred to Real Madrid for a then-world record transfer fee of $131 million. He spent nine seasons with the club, winning four UEFA Champions League titles, two La Liga titles, and two Copa del Rey titles. In 2018, he transferred to Juventus, where he spent three seasons before returning to Manchester United in 2021. He has also had a successful international career with the Portugal national team, having won the UEFA European Championship in 2016 and the UEFA Nations League in 2019.", "One rule of thumb which applies to everything that we do - professionally and personally : Know what the customer want and deliver. In this case, it is important to know what the organisation what from employee. Connect the same to the KRA. Are you part of a delivery which directly ties to the larger organisational objective. If yes, then the next question is success rate of one’s delivery. If the KRAs are achieved or exceeded, then the employee is entitled for a decent hike."])

demo.launch(show_api=False)