Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from huggingface_hub.hf_api import HfFolder | |
HfFolder.save_token('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') | |
access_token = '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' | |
# | |
image_path = r"Image/image.JPG" | |
image = Image.open(image_path) | |
st.set_page_config(page_title="English To Hindi Language Translator App", layout="centered") | |
st.image(image, caption='English To Hindi Language Translator') | |
# page header | |
st.title(f"English Text to Hindi Translation App") | |
with st.form("Prediction_form"): | |
text = st.text_input("Enter text here") | |
#st.title(text) | |
# | |
submit = st.form_submit_button("Translate Text to Hindi") | |
# | |
if submit: | |
tokenizer = AutoTokenizer.from_pretrained(r"model_files/tk",use_auth_token=access_token) | |
model = AutoModelForSeq2SeqLM.from_pretrained(r"model_files/md",use_auth_token=access_token) | |
inputs = tokenizer(text, return_tensors="pt") | |
translated_tokens = model.generate(**inputs, | |
forced_bos_token_id=tokenizer.lang_code_to_id["hin_Deva"], | |
max_length=100) | |
result = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] | |
print(result) | |
# output header | |
st.header("Translated Text") | |
# output results | |
st.success(f"Translated Text : {result}") |