Spaces:
Running
Running
File size: 40,776 Bytes
b08c20e 6f1eb2d ecb00bc 6f1eb2d ecb00bc b08c20e b60aec4 ecb00bc 59e7cde 188b10f 65d2307 59e7cde 188b10f 65d2307 59e7cde 65d2307 96153f3 59e7cde 65d2307 59e7cde 188b10f 65d2307 59e7cde 65d2307 59e7cde ecb00bc 489e4d9 65d2307 188b10f 489e4d9 ecb00bc 489e4d9 65d2307 188b10f 65d2307 188b10f 65d2307 188b10f 65d2307 489e4d9 ecb00bc 489e4d9 188b10f 65d2307 489e4d9 ecb00bc 489e4d9 188b10f 65d2307 489e4d9 ecb00bc 9fd7deb ecb00bc dc6fbda ecb00bc ce5eee2 ecb00bc f018f0f ecb00bc 6f1eb2d 24cbfc6 c167292 24cbfc6 6f1eb2d ecb00bc ce5eee2 ecb00bc 188b10f ecb00bc 4f80d1a 188b10f ecb00bc 188b10f ecb00bc 4f80d1a 188b10f ecb00bc 188b10f ecb00bc 4f80d1a 188b10f ecb00bc 188b10f ecb00bc 4f80d1a 188b10f ecb00bc ce5eee2 c774a2c ecb00bc e075d2a c774a2c e075d2a 4f80d1a ecb00bc dc6fbda ecb00bc 7837344 ecb00bc 69836a2 9fd7deb 79c2d47 1ac2258 69836a2 6f781d7 955d618 1ac2258 6f781d7 955d618 ecb00bc 69836a2 9fd7deb 69836a2 4f80d1a 69836a2 955d618 4f80d1a 69836a2 955d618 ecb00bc 69836a2 9fd7deb 69836a2 4f80d1a 69836a2 4f80d1a 69836a2 955d618 4f80d1a 69836a2 955d618 ecb00bc 69836a2 9fd7deb 69836a2 4f80d1a 69836a2 4f80d1a 955d618 4f80d1a 69836a2 955d618 ecb00bc 297a7b4 9fd7deb 69836a2 4f80d1a 69836a2 4f80d1a 69836a2 955d618 4f80d1a 69836a2 955d618 ecb00bc e075d2a ecb00bc 69836a2 03c29b7 69836a2 ecb00bc c26bc4f 7230dd2 c26bc4f 7c5c639 7230dd2 cf5fe60 c26bc4f ecb00bc f79480c 0c87287 f79480c ecb00bc f79480c ecb00bc f79480c 6f1eb2d 955d618 6f1eb2d 831652c c26bc4f 533ffcd dc9c171 c26bc4f 6f1eb2d 4f80d1a ecb00bc 6f1eb2d ecb00bc 69836a2 ecb00bc fbd7804 ecb00bc 69836a2 ecb00bc fbd7804 ecb00bc 69836a2 ecb00bc fbd7804 ecb00bc 69836a2 ecb00bc fbd7804 ecb00bc 69836a2 ecb00bc fbd7804 ecb00bc a848d37 ecb00bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import os
import re
import torch
import shutil
import logging
import subprocess
import gradio as gr
from audio_separator.separator import Separator
device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"
#=========================#
# Roformer Models #
#=========================#
ROFORMER_MODELS = {
# BS Roformer
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
'BS Roformer | Chorus Male-Female by Sucial': 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt',
# MelBand Roformer
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
'MelBand Roformer | De-Reverb-Echo by Sucial': 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt',
'MelBand Roformer | De-Reverb-Echo V2 by Sucial': 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt',
'MelBand Roformer | Aspiration Less Aggressive by Sucial': 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt',
'MelBand Roformer | Aspiration by Sucial': 'aspiration_mel_band_roformer_sdr_18.9845.ckpt',
'MelBand Roformer | De-Reverb Less Aggressive by anvuew': 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt',
'MelBand Roformer | De-Reverb by anvuew': 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt',
'MelBand Roformer | Vocals by Kimberley Jensen': 'vocals_mel_band_roformer.ckpt',
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris': 'mel_band_roformer_bleed_suppressor_v1.ckpt',
# MelBand Roformer Kim
'MelBand Roformer Kim | FT by unwa': 'mel_band_roformer_kim_ft_unwa.ckpt',
'MelBand Roformer Kim | Big Beta 4 FT by unwa': 'melband_roformer_big_beta4.ckpt',
'MelBand Roformer Kim | Big Beta 5e FT by unwa': 'melband_roformer_big_beta5e.ckpt',
'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt',
'MelBand Roformer Kim | Inst V1 (E) by Unwa': 'melband_roformer_inst_v1e.ckpt',
'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt',
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt',
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
'MelBand Roformer Kim | SYHFT by SYH99999': 'MelBandRoformerSYHFT.ckpt',
'MelBand Roformer Kim | SYHFT V2 by SYH99999': 'MelBandRoformerSYHFTV2.ckpt',
'MelBand Roformer Kim | SYHFT V2.5 by SYH99999': 'MelBandRoformerSYHFTV2.5.ckpt',
'MelBand Roformer Kim | SYHFT V3 by SYH99999': 'MelBandRoformerSYHFTV3Epsilon.ckpt',
'MelBand Roformer Kim | Big SYHFT V1 by SYH99999': 'MelBandRoformerBigSYHFTV1.ckpt',
}
#=========================#
# MDX23C Models #
#=========================#
MDX23C_MODELS = {
'MDX23C DrumSep by aufr33-jarredou': 'MDX23C-DrumSep-aufr33-jarredou.ckpt',
'MDX23C De-Reverb by aufr33-jarredou': 'MDX23C-De-Reverb-aufr33-jarredou.ckpt',
'MDX23C-InstVoc HQ': 'MDX23C-8KFFT-InstVoc_HQ.ckpt',
'VIP | MDX23C-InstVoc HQ 2': 'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
'VIP | MDX23C_D1581': 'MDX23C_D1581.ckpt',
}
#=========================#
# MDXN-NET Models #
#=========================#
MDXNET_MODELS = {
'UVR-MDX-NET 1': 'UVR_MDXNET_1_9703.onnx',
'UVR-MDX-NET 2': 'UVR_MDXNET_2_9682.onnx',
'UVR-MDX-NET 3': 'UVR_MDXNET_3_9662.onnx',
'UVR_MDXNET_9482': 'UVR_MDXNET_9482.onnx',
'UVR-MDX-NET Inst 1': 'UVR-MDX-NET-Inst_1.onnx',
'UVR-MDX-NET Inst 2': 'UVR-MDX-NET-Inst_2.onnx',
'UVR-MDX-NET Inst 3': 'UVR-MDX-NET-Inst_3.onnx',
'UVR-MDX-NET Inst HQ 1': 'UVR-MDX-NET-Inst_HQ_1.onnx',
'UVR-MDX-NET Inst HQ 2': 'UVR-MDX-NET-Inst_HQ_2.onnx',
'UVR-MDX-NET Inst HQ 3': 'UVR-MDX-NET-Inst_HQ_3.onnx',
'UVR-MDX-NET Inst HQ 4': 'UVR-MDX-NET-Inst_HQ_4.onnx',
'UVR-MDX-NET Inst HQ 5': 'UVR-MDX-NET-Inst_HQ_5.onnx',
'UVR-MDX-NET Inst Main': 'UVR-MDX-NET-Inst_Main.onnx',
'UVR-MDX-NET Karaoke': 'UVR_MDXNET_KARA.onnx',
'UVR-MDX-NET Karaoke 2': 'UVR_MDXNET_KARA_2.onnx',
'UVR-MDX-NET Main': 'UVR_MDXNET_Main.onnx',
'UVR-MDX-NET Voc FT': 'UVR-MDX-NET-Voc_FT.onnx',
'Kim Inst': 'Kim_Inst.onnx',
'Kim Vocal 1': 'Kim_Vocal_1.onnx',
'Kim Vocal 2': 'Kim_Vocal_2.onnx',
'kuielab_a_bass': 'kuielab_a_bass.onnx',
'kuielab_a_drums': 'kuielab_a_drums.onnx',
'kuielab_a_other': 'kuielab_a_other.onnx',
'kuielab_a_vocals': 'kuielab_a_vocals.onnx',
'kuielab_b_bass': 'kuielab_b_bass.onnx',
'kuielab_b_drums': 'kuielab_b_drums.onnx',
'kuielab_b_other': 'kuielab_b_other.onnx',
'kuielab_b_vocals': 'kuielab_b_vocals.onnx',
'Reverb HQ By FoxJoy': 'Reverb_HQ_By_FoxJoy.onnx',
'VIP | UVR-MDX-NET_Inst_82_beta': 'UVR-MDX-NET_Inst_82_beta.onnx',
'VIP | UVR-MDX-NET_Inst_90_beta': 'UVR-MDX-NET_Inst_90_beta.onnx',
'VIP | UVR-MDX-NET_Inst_187_beta': 'UVR-MDX-NET_Inst_187_beta.onnx',
'VIP | UVR-MDX-NET-Inst_full_292': 'UVR-MDX-NET-Inst_full_292.onnx',
'VIP | UVR-MDX-NET_Main_340': 'UVR-MDX-NET_Main_340.onnx',
'VIP | UVR-MDX-NET_Main_390': 'UVR-MDX-NET_Main_390.onnx',
'VIP | UVR-MDX-NET_Main_406': 'UVR-MDX-NET_Main_406.onnx',
'VIP | UVR-MDX-NET_Main_427': 'UVR-MDX-NET_Main_427.onnx',
'VIP | UVR-MDX-NET_Main_438': 'UVR-MDX-NET_Main_438.onnx',
}
#========================#
# VR-ARCH Models #
#========================#
VR_ARCH_MODELS = {
'1_HP-UVR': '1_HP-UVR.pth',
'2_HP-UVR': '2_HP-UVR.pth',
'3_HP-Vocal-UVR': '3_HP-Vocal-UVR.pth',
'4_HP-Vocal-UVR': '4_HP-Vocal-UVR.pth',
'5_HP-Karaoke-UVR': '5_HP-Karaoke-UVR.pth',
'6_HP-Karaoke-UVR': '6_HP-Karaoke-UVR.pth',
'7_HP2-UVR': '7_HP2-UVR.pth',
'8_HP2-UVR': '8_HP2-UVR.pth',
'9_HP2-UVR': '9_HP2-UVR.pth',
'10_SP-UVR-2B-32000-1': '10_SP-UVR-2B-32000-1.pth',
'11_SP-UVR-2B-32000-2': '11_SP-UVR-2B-32000-2.pth',
'12_SP-UVR-3B-44100': '12_SP-UVR-3B-44100.pth',
'13_SP-UVR-4B-44100-1': '13_SP-UVR-4B-44100-1.pth',
'14_SP-UVR-4B-44100-2': '14_SP-UVR-4B-44100-2.pth',
'15_SP-UVR-MID-44100-1': '15_SP-UVR-MID-44100-1.pth',
'16_SP-UVR-MID-44100-2': '16_SP-UVR-MID-44100-2.pth',
'17_HP-Wind_Inst-UVR': '17_HP-Wind_Inst-UVR.pth',
'MGM_HIGHEND_v4': 'MGM_HIGHEND_v4.pth',
'MGM_LOWEND_A_v4': 'MGM_LOWEND_A_v4.pth',
'MGM_LOWEND_B_v4': 'MGM_LOWEND_B_v4.pth',
'MGM_MAIN_v4': 'MGM_MAIN_v4.pth',
'UVR-BVE-4B_SN-44100-1': 'UVR-BVE-4B_SN-44100-1.pth',
'UVR-De-Reverb by aufr33-jarredou': 'UVR-De-Reverb-aufr33-jarredou.pth',
'UVR-De-Echo-Aggressive by FoxJoy': 'UVR-De-Echo-Aggressive.pth',
'UVR-De-Echo-Normal by FoxJoy': 'UVR-De-Echo-Normal.pth',
'UVR-DeEcho-DeReverb by FoxJoy': 'UVR-DeEcho-DeReverb.pth',
'UVR-DeNoise-Lite by FoxJoy': 'UVR-DeNoise-Lite.pth',
'UVR-DeNoise by FoxJoy': 'UVR-DeNoise.pth',
}
#=======================#
# DEMUCS Models #
#=======================#
DEMUCS_MODELS = {
'htdemucs': 'htdemucs.yaml',
'htdemucs_6s': 'htdemucs_6s.yaml',
'htdemucs_ft': 'htdemucs_ft.yaml',
'hdemucs_mmi': 'hdemucs_mmi.yaml',
}
OUTPUT_FORMAT = ["wav", "flac", "mp3", "ogg", "opus", "m4a", "aiff", "ac3"]
def print_message(input_file, model_name):
"""Prints information about the audio separation process."""
base_name = os.path.splitext(os.path.basename(input_file))[0]
print("\n")
print("🎵 Audio-Separator 🎵")
print("Input audio:", base_name)
print("Separation Model:", model_name)
print("Audio Separation Process...")
def prepare_output_dir(input_file, output_dir):
"""Create a directory for the output files and clean it if it already exists."""
base_name = os.path.splitext(os.path.basename(input_file))[0]
out_dir = os.path.join(output_dir, base_name)
try:
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
except Exception as e:
raise RuntimeError(f"Failed to prepare output directory {out_dir}: {e}")
return out_dir
def rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model):
base_name = os.path.splitext(os.path.basename(audio))[0]
stems = {
"Vocals": vocals_stem.replace("NAME", base_name).replace("STEM", "Vocals").replace("MODEL", model),
"Instrumental": instrumental_stem.replace("NAME", base_name).replace("STEM", "Instrumental").replace("MODEL", model),
"Drums": drums_stem.replace("NAME", base_name).replace("STEM", "Drums").replace("MODEL", model),
"Bass": bass_stem.replace("NAME", base_name).replace("STEM", "Bass").replace("MODEL", model),
"Other": other_stem.replace("NAME", base_name).replace("STEM", "Other").replace("MODEL", model),
"Guitar": guitar_stem.replace("NAME", base_name).replace("STEM", "Guitar").replace("MODEL", model),
"Piano": piano_stem.replace("NAME", base_name).replace("STEM", "Piano").replace("MODEL", model),
}
return stems
def leaderboard(list_filter, list_limit):
try:
result = subprocess.run(
["audio-separator", "-l", f"--list_filter={list_filter}", f"--list_limit={list_limit}"],
capture_output=True,
text=True,
)
if result.returncode != 0:
return f"Error: {result.stderr}"
return "<table border='1'>" + "".join(
f"<tr style='{'font-weight: bold; font-size: 1.2em;' if i == 0 else ''}'>" +
"".join(f"<td>{cell}</td>" for cell in re.split(r"\s{2,}", line.strip())) +
"</tr>"
for i, line in enumerate(re.findall(r"^(?!-+)(.+)$", result.stdout.strip(), re.MULTILINE))
) + "</table>"
except Exception as e:
return f"Error: {e}"
def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using Roformer model."""
stemname = rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model_key)
print_message(audio, model_key)
model = ROFORMER_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
"pitch_shift": pitch_shift,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, stemname)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"Roformer separation failed: {e}") from e
def mdx23c_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using MDX23C model."""
stemname = rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model_key)
print_message(audio, model_key)
model = MDX23C_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
"pitch_shift": pitch_shift,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, stemname)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"MDX23C separation failed: {e}") from e
def mdx_separator(audio, model_key, hop_length, seg_size, overlap, denoise, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using MDX-NET model."""
stemname = rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model_key)
print_message(audio, model_key)
model = MDXNET_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdx_params={
"hop_length": hop_length,
"segment_size": seg_size,
"overlap": overlap,
"batch_size": batch_size,
"enable_denoise": denoise,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, stemname)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"MDX-NET separation failed: {e}") from e
def vr_separator(audio, model_key, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using VR ARCH model."""
stemname = rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model_key)
print_message(audio, model_key)
model = VR_ARCH_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
vr_params={
"batch_size": batch_size,
"window_size": window_size,
"aggression": aggression,
"enable_tta": tta,
"enable_post_process": post_process,
"post_process_threshold": post_process_threshold,
"high_end_process": high_end_process,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, stemname)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"VR ARCH separation failed: {e}") from e
def demucs_separator(audio, model_key, seg_size, shifts, overlap, segments_enabled, model_dir, out_dir, out_format, norm_thresh, amp_thresh, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using Demucs model."""
stemname = rename_stems(audio, vocals_stem, instrumental_stem, other_stem, drums_stem, bass_stem, guitar_stem, piano_stem, model_key)
print_message(audio, model_key)
model = DEMUCS_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
demucs_params={
"segment_size": seg_size,
"shifts": shifts,
"overlap": overlap,
"segments_enabled": segments_enabled,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, stemname)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
if model_key == "htdemucs_6s":
return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
else:
return stems[0], stems[1], stems[2], stems[3], None, None
except Exception as e:
raise RuntimeError(f"Demucs separation failed: {e}") from e
def update_stems(model):
"""Update the visibility of stem outputs based on the selected Demucs model."""
if model == "htdemucs_6s":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def show_hide_params(param):
"""Update the visibility of a parameter based on the checkbox state."""
return gr.update(visible=param)
with gr.Blocks(
title="🎵 Audio-Separator by Politrees 🎵",
css="footer{display:none !important}",
theme=gr.themes.Default(
spacing_size="sm",
radius_size="lg",
)
) as app:
gr.HTML("<h1><center> 🎵 Audio-Separator by Politrees 🎵 </center></h1>")
with gr.Tab("Roformer"):
with gr.Group():
with gr.Row():
roformer_model = gr.Dropdown(value="MelBand Roformer Kim | Big Beta 5e FT by unwa", label="Select the Model", choices=list(ROFORMER_MODELS.keys()), scale=3)
roformer_output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMAT, label="Output Format", info="The format of the output audio file.", scale=1)
with gr.Accordion("Advanced settings", open=False):
with gr.Column(variant='panel'):
with gr.Group():
roformer_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
with gr.Row():
roformer_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.", show_reset_button=False, visible=False)
roformer_overlap = gr.Slider(minimum=2, maximum=10, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Lower is better but slower.", show_reset_button=False)
roformer_pitch_shift = gr.Slider(minimum=-24, maximum=24, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.", show_reset_button=False)
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
roformer_batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.", show_reset_button=False)
roformer_norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.", show_reset_button=False)
roformer_amp_threshold = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.0, label="Amplification threshold", info="The threshold for audio amplification.", show_reset_button=False)
with gr.Row():
roformer_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
roformer_button = gr.Button("Separate!", variant="primary")
with gr.Row():
roformer_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
roformer_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("MDX23C"):
with gr.Group():
with gr.Row():
mdx23c_model = gr.Dropdown(value="MDX23C-InstVoc HQ", label="Select the Model", choices=list(MDX23C_MODELS.keys()), scale=3)
mdx23c_output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMAT, label="Output Format", info="The format of the output audio file.", scale=1)
with gr.Accordion("Advanced settings", open=False):
with gr.Column(variant='panel'):
with gr.Group():
mdx23c_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
with gr.Row():
mdx23c_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.", show_reset_button=False, visible=False)
mdx23c_overlap = gr.Slider(minimum=2, maximum=50, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.", show_reset_button=False)
mdx23c_pitch_shift = gr.Slider(minimum=-24, maximum=24, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.", show_reset_button=False)
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
mdx23c_batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.", show_reset_button=False)
mdx23c_norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.", show_reset_button=False)
mdx23c_amp_threshold = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.0, label="Amplification threshold", info="The threshold for audio amplification.", show_reset_button=False)
with gr.Row():
mdx23c_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
mdx23c_button = gr.Button("Separate!", variant="primary")
with gr.Row():
mdx23c_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
mdx23c_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("MDX-NET"):
with gr.Group():
with gr.Row():
mdx_model = gr.Dropdown(value="UVR-MDX-NET Inst HQ 5", label="Select the Model", choices=list(MDXNET_MODELS.keys()), scale=3)
mdx_output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMAT, label="Output Format", info="The format of the output audio file.", scale=1)
with gr.Accordion("Advanced settings", open=False):
with gr.Column(variant='panel'):
with gr.Group():
mdx_denoise = gr.Checkbox(value=False, label="Denoise", info="Enable denoising after separation.")
with gr.Row():
mdx_hop_length = gr.Slider(minimum=32, maximum=2048, step=32, value=1024, label="Hop Length", info="Usually called stride in neural networks; only change if you know what you're doing.", show_reset_button=False)
mdx_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.", show_reset_button=False)
mdx_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.", show_reset_button=False)
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
mdx_batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.", show_reset_button=False)
mdx_norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.", show_reset_button=False)
mdx_amp_threshold = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.0, label="Amplification threshold", info="The threshold for audio amplification.", show_reset_button=False)
with gr.Row():
mdx_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
mdx_button = gr.Button("Separate!", variant="primary")
with gr.Row():
mdx_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
mdx_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("VR ARCH"):
with gr.Group():
with gr.Row():
vr_model = gr.Dropdown(value="1_HP-UVR", label="Select the Model", choices=list(VR_ARCH_MODELS.keys()), scale=3)
vr_output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMAT, label="Output Format", info="The format of the output audio file.", scale=1)
with gr.Accordion("Advanced settings", open=False):
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
vr_post_process = gr.Checkbox(value=False, label="Post Process", info="Identify leftover artifacts within vocal output; may improve separation for some songs.")
vr_tta = gr.Checkbox(value=False, label="TTA", info="Enable Test-Time-Augmentation; slow but improves quality.")
vr_high_end_process = gr.Checkbox(value=False, label="High End Process", info="Mirror the missing frequency range of the output.")
with gr.Row():
vr_post_process_threshold = gr.Slider(minimum=0.1, maximum=0.3, step=0.1, value=0.2, label="Post Process Threshold", info="Threshold for post-processing.", show_reset_button=False, visible=False)
vr_window_size = gr.Slider(minimum=320, maximum=1024, step=32, value=512, label="Window Size", info="Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality.", show_reset_button=False)
vr_aggression = gr.Slider(minimum=1, maximum=100, step=1, value=5, label="Agression", info="Intensity of primary stem extraction.", show_reset_button=False)
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
vr_batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.", show_reset_button=False)
vr_norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.", show_reset_button=False)
vr_amp_threshold = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.0, label="Amplification threshold", info="The threshold for audio amplification.", show_reset_button=False)
with gr.Row():
vr_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
vr_button = gr.Button("Separate!", variant="primary")
with gr.Row():
vr_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
vr_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("Demucs"):
with gr.Group():
with gr.Row():
demucs_model = gr.Dropdown(value="htdemucs_ft", label="Select the Model", choices=list(DEMUCS_MODELS.keys()), scale=3)
demucs_output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMAT, label="Output Format", info="The format of the output audio file.", scale=1)
with gr.Accordion("Advanced settings", open=False):
with gr.Column(variant='panel'):
with gr.Group():
demucs_segments_enabled = gr.Checkbox(value=True, label="Segment-wise processing", info="Enable segment-wise processing.")
with gr.Row():
demucs_seg_size = gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Segment Size", info="Size of segments into which the audio is split. Higher = slower but better quality.", show_reset_button=False)
demucs_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Overlap between prediction windows. Higher = slower but better quality.", show_reset_button=False)
demucs_shifts = gr.Slider(minimum=0, maximum=20, step=1, value=2, label="Shifts", info="Number of predictions with random shifts, higher = slower but better quality.", show_reset_button=False)
with gr.Column(variant='panel'):
with gr.Group():
with gr.Row():
demucs_norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.", show_reset_button=False)
demucs_amp_threshold = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.0, label="Amplification threshold", info="The threshold for audio amplification.", show_reset_button=False)
with gr.Row():
demucs_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
demucs_button = gr.Button("Separate!", variant="primary")
with gr.Row():
demucs_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
demucs_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Row():
demucs_stem3 = gr.Audio(label="Stem 3", type="filepath", interactive=False)
demucs_stem4 = gr.Audio(label="Stem 4", type="filepath", interactive=False)
with gr.Row(visible=False) as stem6:
demucs_stem5 = gr.Audio(label="Stem 5", type="filepath", interactive=False)
demucs_stem6 = gr.Audio(label="Stem 6", type="filepath", interactive=False)
with gr.Tab("Settings"):
with gr.Group():
with gr.Row():
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="Directory to cache model files", info="The directory where model files are stored.", placeholder="/tmp/audio-separator-models/")
output_dir = gr.Textbox(value="output", label="File output directory", info="The directory where output files will be saved.", placeholder="output")
with gr.Accordion("Rename Stems", open=False):
gr.Markdown(
"""
Keys for automatic determination of input file names, stems, and models to simplify the construction of output file names.
Keys:
* **NAME** - Input File Name
* **STEM** - Stem Name (e.g., Vocals, Instrumental)
* **MODEL** - Model Name (e.g., BS-Roformer-Viperx-1297)
> Example:
> * **Usage:** NAME_(STEM)_MODEL
> * **Output File Name:** Music_(Vocals)_BS-Roformer-Viperx-1297
"""
)
with gr.Row():
vocals_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Vocals Stem", info="Output example: Music_(Vocals)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
instrumental_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Instrumental Stem", info="Output example: Music_(Instrumental)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
other_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Other Stem", info="Output example: Music_(Other)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
with gr.Row():
drums_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Drums Stem", info="Output example: Music_(Drums)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
bass_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Bass Stem", info="Output example: Music_(Bass)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
with gr.Row():
guitar_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Guitar Stem", info="Output example: Music_(Guitar)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
piano_stem = gr.Textbox(value="NAME_(STEM)_MODEL", label="Piano Stem", info="Output example: Music_(Piano)_BS-Roformer-Viperx-1297", placeholder="NAME_(STEM)_MODEL")
with gr.Tab("Leaderboard"):
with gr.Group():
with gr.Row(equal_height=True):
list_filter = gr.Dropdown(value="vocals", choices=["vocals", "instrumental", "drums", "bass", "guitar", "piano", "other"], label="List filter", info="Filter and sort the model list by 'stem'")
list_limit = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="List limit", info="Limit the number of models shown.", show_reset_button=False)
list_button = gr.Button("Show list", variant="primary")
output_list = gr.HTML(label="Leaderboard")
with gr.Tab("Credits"):
gr.Markdown(
"""
This Space created by **[Politrees](https://github.com/Bebra777228)**.
* python-audio-separator by **[beveradb](https://github.com/beveradb)**.
* Thanks to **[Hev832](https://huggingface.co/Hev832)** for the help with the code.
"""
)
roformer_override_seg_size.change(show_hide_params, inputs=[roformer_override_seg_size], outputs=[roformer_seg_size])
mdx23c_override_seg_size.change(show_hide_params, inputs=[mdx23c_override_seg_size], outputs=[mdx23c_seg_size])
vr_post_process.change(show_hide_params, inputs=[vr_post_process], outputs=[vr_post_process_threshold])
demucs_model.change(update_stems, inputs=[demucs_model], outputs=stem6)
list_button.click(leaderboard, inputs=[list_filter, list_limit], outputs=output_list)
roformer_button.click(
roformer_separator,
inputs=[
roformer_audio,
roformer_model,
roformer_seg_size,
roformer_override_seg_size,
roformer_overlap,
roformer_pitch_shift,
model_file_dir,
output_dir,
roformer_output_format,
roformer_norm_threshold,
roformer_amp_threshold,
roformer_batch_size,
vocals_stem,
instrumental_stem,
other_stem,
drums_stem,
bass_stem,
guitar_stem,
piano_stem,
],
outputs=[
roformer_stem1,
roformer_stem2,
], concurrency_limit=1,
)
mdx23c_button.click(
mdx23c_separator,
inputs=[
mdx23c_audio,
mdx23c_model,
mdx23c_seg_size,
mdx23c_override_seg_size,
mdx23c_overlap,
mdx23c_pitch_shift,
model_file_dir,
output_dir,
mdx23c_output_format,
mdx23c_norm_threshold,
mdx23c_amp_threshold,
mdx23c_batch_size,
vocals_stem,
instrumental_stem,
other_stem,
drums_stem,
bass_stem,
guitar_stem,
piano_stem,
],
outputs=[
mdx23c_stem1,
mdx23c_stem2,
], concurrency_limit=1,
)
mdx_button.click(
mdx_separator,
inputs=[
mdx_audio,
mdx_model,
mdx_hop_length,
mdx_seg_size,
mdx_overlap,
mdx_denoise,
model_file_dir,
output_dir,
mdx_output_format,
mdx_norm_threshold,
mdx_amp_threshold,
mdx_batch_size,
vocals_stem,
instrumental_stem,
other_stem,
drums_stem,
bass_stem,
guitar_stem,
piano_stem,
],
outputs=[
mdx_stem1,
mdx_stem2,
], concurrency_limit=1,
)
vr_button.click(
vr_separator,
inputs=[
vr_audio,
vr_model,
vr_window_size,
vr_aggression,
vr_tta,
vr_post_process,
vr_post_process_threshold,
vr_high_end_process,
model_file_dir,
output_dir,
vr_output_format,
vr_norm_threshold,
vr_amp_threshold,
vr_batch_size,
vocals_stem,
instrumental_stem,
other_stem,
drums_stem,
bass_stem,
guitar_stem,
piano_stem,
],
outputs=[
vr_stem1,
vr_stem2,
], concurrency_limit=1,
)
demucs_button.click(
demucs_separator,
inputs=[
demucs_audio,
demucs_model,
demucs_seg_size,
demucs_shifts,
demucs_overlap,
demucs_segments_enabled,
model_file_dir,
output_dir,
demucs_output_format,
demucs_norm_threshold,
demucs_amp_threshold,
vocals_stem,
instrumental_stem,
other_stem,
drums_stem,
bass_stem,
guitar_stem,
piano_stem,
],
outputs=[
demucs_stem1,
demucs_stem2,
demucs_stem3,
demucs_stem4,
demucs_stem5,
demucs_stem6,
], concurrency_limit=1,
)
def main():
app.queue().launch(share=True, debug=True)
if __name__ == "__main__":
main()
|