Spaces:
Runtime error
Runtime error
import gradio as gr | |
import whisper | |
from transformers import pipeline | |
model = whisper.load_model("base") | |
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions") | |
def analyze_sentiment(text): | |
results = sentiment_analysis(text) | |
sentiment_results = {result['label']: result['score'] for result in results} | |
return sentiment_results | |
def get_sentiment_emoji(sentiment): | |
# Define the emojis corresponding to each sentiment | |
emoji_mapping = { | |
"disappointment": "😞", | |
"sadness": "😢", | |
"annoyance": "😠", | |
"neutral": "😐", | |
"disapproval": "👎", | |
"realization": "😮", | |
"nervousness": "😬", | |
"approval": "👍", | |
"joy": "😄", | |
"anger": "😡", | |
"embarrassment": "😳", | |
"caring": "🤗", | |
"remorse": "😔", | |
"disgust": "🤢", | |
"grief": "😥", | |
"confusion": "😕", | |
"relief": "😌", | |
"desire": "😍", | |
"admiration": "😌", | |
"optimism": "😊", | |
"fear": "😨", | |
"love": "❤️", | |
"excitement": "🎉", | |
"curiosity": "🤔", | |
"amusement": "😄", | |
"surprise": "😲", | |
"gratitude": "🙏", | |
"pride": "🦁" | |
} | |
return emoji_mapping.get(sentiment, "") | |
def display_sentiment_results(sentiment_results, option): | |
sentiment_text = "" | |
for sentiment, score in sentiment_results.items(): | |
emoji = get_sentiment_emoji(sentiment) | |
if option == "Sentiment Only": | |
sentiment_text += f"{sentiment} {emoji}\n" | |
elif option == "Sentiment + Score": | |
sentiment_text += f"{sentiment} {emoji}: {score}\n" | |
return sentiment_text | |
def inference(audio, sentiment_option): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
_, probs = model.detect_language(mel) | |
lang = max(probs, key=probs.get) | |
options = whisper.DecodingOptions(fp16=False) | |
result = whisper.decode(model, mel, options) | |
sentiment_results = analyze_sentiment(result.text) | |
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option) | |
return lang.upper(), result.text, sentiment_output | |
title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>""" | |
image_path = "thmbnail.jpg" | |
description = """ | |
💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br> | |
<br> | |
⚙️ Components of the tool:<br> | |
<br> | |
- Real-time multilingual speech recognition<br> | |
- Language identification<br> | |
- Sentiment analysis of the transcriptions<br> | |
<br> | |
🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br> | |
<br> | |
😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br> | |
<br> | |
✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br> | |
<br> | |
❓ Use the microphone for real-time speech recognition.<br> | |
<br> | |
⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br> | |
""" | |
custom_css = """ | |
#banner-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chat-message { | |
font-size: 14px; | |
min-height: 300px; | |
} | |
""" | |
block = gr.Blocks(css=custom_css) | |
with block: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Image(image_path, elem_id="banner-image", show_label=False) | |
with gr.Column(): | |
gr.HTML(description) | |
with gr.Group(): | |
with gr.Box(): | |
audio = gr.Audio( | |
label="Input Audio", | |
show_label=False, | |
source="microphone", | |
type="filepath" | |
) | |
sentiment_option = gr.Radio( | |
choices=["Sentiment Only", "Sentiment + Score"], | |
label="Select an option", | |
default="Sentiment Only" | |
) | |
btn = gr.Button("Transcribe") | |
lang_str = gr.Textbox(label="Language") | |
text = gr.Textbox(label="Transcription") | |
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True) | |
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output]) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
</p> | |
</div> | |
''') | |
block.launch() | |