|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import os |
|
import torch |
|
from basicsr.utils import imwrite |
|
|
|
from gfpgan import GFPGANer |
|
|
|
|
|
def main(): |
|
"""Inference demo for GFPGAN (for users). |
|
""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'-i', |
|
'--input', |
|
type=str, |
|
default='inputs/whole_imgs', |
|
help='Input image or folder. Default: inputs/whole_imgs') |
|
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results') |
|
|
|
parser.add_argument( |
|
'-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3') |
|
parser.add_argument( |
|
'-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') |
|
|
|
parser.add_argument( |
|
'--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan') |
|
parser.add_argument( |
|
'--bg_tile', |
|
type=int, |
|
default=400, |
|
help='Tile size for background sampler, 0 for no tile during testing. Default: 400') |
|
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') |
|
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') |
|
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces') |
|
parser.add_argument( |
|
'--ext', |
|
type=str, |
|
default='auto', |
|
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto') |
|
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.') |
|
args = parser.parse_args() |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.input.endswith('/'): |
|
args.input = args.input[:-1] |
|
if os.path.isfile(args.input): |
|
img_list = [args.input] |
|
else: |
|
img_list = sorted(glob.glob(os.path.join(args.input, '*'))) |
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
|
|
if args.bg_upsampler == 'realesrgan': |
|
if not torch.cuda.is_available(): |
|
import warnings |
|
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' |
|
'If you really want to use it, please modify the corresponding codes.') |
|
bg_upsampler = None |
|
else: |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from realesrgan import RealESRGANer |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) |
|
bg_upsampler = RealESRGANer( |
|
scale=2, |
|
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', |
|
model=model, |
|
tile=args.bg_tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=True) |
|
else: |
|
bg_upsampler = None |
|
|
|
|
|
if args.version == '1': |
|
arch = 'original' |
|
channel_multiplier = 1 |
|
model_name = 'GFPGANv1' |
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth' |
|
elif args.version == '1.2': |
|
arch = 'clean' |
|
channel_multiplier = 2 |
|
model_name = 'GFPGANCleanv1-NoCE-C2' |
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth' |
|
elif args.version == '1.3': |
|
arch = 'clean' |
|
channel_multiplier = 2 |
|
model_name = 'GFPGANv1.3' |
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth' |
|
elif args.version == '1.4': |
|
arch = 'clean' |
|
channel_multiplier = 2 |
|
model_name = 'GFPGANv1.4' |
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' |
|
elif args.version == 'RestoreFormer': |
|
arch = 'RestoreFormer' |
|
channel_multiplier = 2 |
|
model_name = 'RestoreFormer' |
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth' |
|
else: |
|
raise ValueError(f'Wrong model version {args.version}.') |
|
|
|
|
|
|
|
|
|
model_path = os.path.join('gfpgan/weights', f'{model_name}.pth') |
|
|
|
|
|
|
|
|
|
restorer = GFPGANer( |
|
model_path=model_path, |
|
upscale=args.upscale, |
|
arch=arch, |
|
channel_multiplier=channel_multiplier, |
|
bg_upsampler=bg_upsampler) |
|
|
|
|
|
for img_path in img_list: |
|
|
|
img_name = os.path.basename(img_path) |
|
print(f'Processing {img_name} ...') |
|
basename, ext = os.path.splitext(img_name) |
|
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) |
|
|
|
|
|
cropped_faces, restored_faces, restored_img = restorer.enhance( |
|
input_img, |
|
has_aligned=args.aligned, |
|
only_center_face=args.only_center_face, |
|
paste_back=True, |
|
weight=args.weight) |
|
|
|
|
|
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): |
|
|
|
save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png') |
|
imwrite(cropped_face, save_crop_path) |
|
|
|
if args.suffix is not None: |
|
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' |
|
else: |
|
save_face_name = f'{basename}_{idx:02d}.png' |
|
save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name) |
|
imwrite(restored_face, save_restore_path) |
|
|
|
cmp_img = np.concatenate((cropped_face, restored_face), axis=1) |
|
imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png')) |
|
|
|
|
|
if restored_img is not None: |
|
if args.ext == 'auto': |
|
extension = ext[1:] |
|
else: |
|
extension = args.ext |
|
|
|
if args.suffix is not None: |
|
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}') |
|
else: |
|
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}') |
|
imwrite(restored_img, save_restore_path) |
|
|
|
print(f'Results are in the [{args.output}] folder.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|