import streamlit as st import pandas as pd from sklearn.ensemble import RandomForestClassifier from joblib import load st.title("Tabular Data Sentiment Analysis") model = load('random_forest_model.joblib') df = pd.DataFrame( [{'product_id': 30, 'Review_Length': 252, 'Rating': 4, 'Avg_Word_Length': 5, 'Times_purchased': 13, 'unique_words': 40}]) edited_df = st.data_editor(df, num_rows="dynamic") if st.button("Predict Sentiment", type="primary"): output = model.predict(edited_df) edited_df['predicted sentiment'] = output edited_df['predicted sentiment'].replace({0:"Positive", 1:"Negative"}, inplace=True) st.text(edited_df)