Pranav0111's picture
Update app.py
7aec52d verified
raw
history blame
9.88 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
# Initialize models
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=50,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
class JournalCompanion:
def __init__(self):
self.entries = []
def generate_prompts(self, sentiment):
prompt_template = f"""Generate three reflective journal prompts for someone feeling {sentiment.lower()}.
Make them thoughtful and encouraging. Format them as a bullet point list."""
try:
response = text_generator(prompt_template)[0]['generated_text']
# Extract the generated prompts after the input prompt
prompts = response[len(prompt_template):]
return "\n\nReflective Prompts:" + prompts
except Exception as e:
print("Error generating prompts:", e)
return "\n\nReflective Prompts:\n- What thoughts and feelings are you experiencing right now?\n- How has this experience affected you?\n- What would be helpful for you at this moment?"
def generate_affirmation(self, sentiment):
affirmation_template = f"Generate a short, encouraging affirmation for someone feeling {sentiment.lower()}."
try:
response = text_generator(affirmation_template)[0]['generated_text']
# Extract the generated affirmation after the input prompt
affirmation = response[len(affirmation_template):].strip()
return affirmation
except Exception as e:
print("Error generating affirmation:", e)
return "I acknowledge my feelings and trust in my ability to handle this moment."
def analyze_entry(self, entry_text):
if not entry_text.strip():
return ("Please write something in your journal entry.", "", "", "")
try:
# Perform sentiment analysis
sentiment_result = sentiment_analyzer(entry_text)[0]
sentiment = sentiment_result["label"].upper()
sentiment_score = sentiment_result["score"]
except Exception as e:
print("Error during sentiment analysis:", e)
return (
"An error occurred during analysis. Please try again.",
"Error",
"Could not analyze sentiment due to an error.",
"Could not generate affirmation due to an error."
)
entry_data = {
"text": entry_text,
"timestamp": datetime.now().isoformat(),
"sentiment": sentiment,
"sentiment_score": sentiment_score
}
self.entries.append(entry_data)
# Generate responses using TinyLlama
prompts = self.generate_prompts(sentiment)
affirmation = self.generate_affirmation(sentiment)
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
return message, sentiment, prompts, affirmation
def get_monthly_insights(self):
if not self.entries:
return "No entries yet to analyze."
total_entries = len(self.entries)
positive_entries = sum(1 for entry in self.entries if entry["sentiment"] == "POSITIVE")
try:
percentage_positive = (positive_entries / total_entries * 100)
percentage_negative = ((total_entries - positive_entries) / total_entries * 100)
insights = f"""Monthly Insights:
Total Entries: {total_entries}
Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
Negative Entries: {total_entries - positive_entries} ({percentage_negative:.1f}%)
"""
return insights
except ZeroDivisionError:
return "No entries available for analysis."
def create_journal_interface():
journal = JournalCompanion()
# Custom CSS for better styling
custom_css = """
/* Global styles */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
/* Header styles */
.header {
text-align: center;
margin-bottom: 2rem;
background: linear-gradient(135deg, #6B73FF 0%, #000DFF 100%);
padding: 2rem;
border-radius: 15px;
color: white;
}
/* Input area styles */
.input-container {
background: white;
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
/* Output area styles */
.output-container {
background: #f8f9fa;
border-radius: 15px;
padding: 20px;
margin-top: 20px;
}
/* Button styles */
.custom-button {
background: linear-gradient(135deg, #6B73FF 0%, #000DFF 100%);
border: none;
padding: 10px 20px;
border-radius: 8px;
color: white;
font-weight: bold;
cursor: pointer;
transition: transform 0.2s;
}
.custom-button:hover {
transform: translateY(-2px);
}
/* Card styles */
.card {
background: white;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
transition: transform 0.2s;
}
.card:hover {
transform: translateY(-2px);
}
/* Animation for results */
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
.result-animation {
animation: fadeIn 0.5s ease-out;
}
/* Responsive design */
@media (max-width: 768px) {
.container {
padding: 10px;
}
.header {
padding: 1rem;
}
}
"""
with gr.Blocks(css=custom_css, title="AI Journal Companion") as interface:
with gr.Column(elem_classes="container"):
# Header
with gr.Column(elem_classes="header"):
gr.Markdown("# πŸ“” AI Journal Companion")
gr.Markdown(
"Transform your thoughts into insights with AI-powered journaling",
elem_classes="subtitle"
)
# Main content
with gr.Row():
# Input Column
with gr.Column(scale=1, elem_classes="input-container"):
entry_input = gr.Textbox(
label="Write Your Thoughts",
placeholder="Share what's on your mind...",
lines=8,
elem_classes="journal-input"
)
submit_btn = gr.Button(
"✨ Analyze Entry",
variant="primary",
elem_classes="custom-button"
)
# Output Column
with gr.Column(scale=1, elem_classes="output-container"):
with gr.Column(elem_classes="card result-animation"):
result_message = gr.Markdown(label="Analysis")
sentiment_output = gr.Textbox(
label="Emotional Tone",
elem_classes="sentiment-output"
)
with gr.Column(elem_classes="card result-animation"):
prompt_output = gr.Markdown(
label="Reflection Prompts",
elem_classes="prompts-output"
)
with gr.Column(elem_classes="card result-animation"):
affirmation_output = gr.Textbox(
label="Your Daily Affirmation",
elem_classes="affirmation-output"
)
# Insights Section
with gr.Row(elem_classes="insights-section"):
with gr.Column(scale=1):
insights_btn = gr.Button(
"πŸ“Š View Monthly Insights",
elem_classes="custom-button"
)
insights_output = gr.Markdown(
elem_classes="card insights-card"
)
# Event handlers
submit_btn.click(
fn=journal.analyze_entry,
inputs=[entry_input],
outputs=[
result_message,
sentiment_output,
prompt_output,
affirmation_output
]
)
insights_btn.click(
fn=journal.get_monthly_insights,
inputs=[],
outputs=[insights_output]
)
return interface
if __name__ == "__main__":
interface = create_journal_interface()
interface.launch()