Spaces:
Running
Running
Pranav0111
commited on
Commit
β’
6c88285
1
Parent(s):
041fea2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
|
6 |
+
# Page config
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Emotion Detector",
|
9 |
+
page_icon="π",
|
10 |
+
layout="wide"
|
11 |
+
)
|
12 |
+
|
13 |
+
@st.cache_resource
|
14 |
+
def load_model():
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
17 |
+
return tokenizer, model
|
18 |
+
|
19 |
+
def analyze_text(text, tokenizer, model):
|
20 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
21 |
+
outputs = model(**inputs)
|
22 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
23 |
+
return probs[0].detach().numpy()
|
24 |
+
|
25 |
+
def create_emotion_plot(emotions_dict):
|
26 |
+
fig = go.Figure(data=[
|
27 |
+
go.Bar(
|
28 |
+
x=list(emotions_dict.keys()),
|
29 |
+
y=list(emotions_dict.values()),
|
30 |
+
marker_color=['#FF9999', '#99FF99', '#9999FF', '#FFFF99', '#FF99FF', '#99FFFF', '#FFB366']
|
31 |
+
)
|
32 |
+
])
|
33 |
+
|
34 |
+
fig.update_layout(
|
35 |
+
title="Emotion Analysis Results",
|
36 |
+
xaxis_title="Emotions",
|
37 |
+
yaxis_title="Confidence Score",
|
38 |
+
yaxis_range=[0, 1]
|
39 |
+
)
|
40 |
+
return fig
|
41 |
+
|
42 |
+
# App title and description
|
43 |
+
st.title("π Text Emotion Analysis")
|
44 |
+
st.markdown("""
|
45 |
+
This app analyzes the emotional content of your text using a pre-trained emotion detection model.
|
46 |
+
Try typing or pasting some text below!
|
47 |
+
""")
|
48 |
+
|
49 |
+
# Load model
|
50 |
+
with st.spinner("Loading model..."):
|
51 |
+
tokenizer, model = load_model()
|
52 |
+
|
53 |
+
# Define emotions
|
54 |
+
emotions = ['anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
|
55 |
+
|
56 |
+
# Text input
|
57 |
+
text_input = st.text_area("Enter your text here:", height=150)
|
58 |
+
|
59 |
+
# Add example button
|
60 |
+
if st.button("Try an example"):
|
61 |
+
text_input = "I just got the best news ever! I'm so excited and happy I can hardly contain myself! π"
|
62 |
+
st.text_area("Enter your text here:", value=text_input, height=150)
|
63 |
+
|
64 |
+
if st.button("Analyze Emotions"):
|
65 |
+
if text_input.strip() == "":
|
66 |
+
st.warning("Please enter some text to analyze.")
|
67 |
+
else:
|
68 |
+
with st.spinner("Analyzing emotions..."):
|
69 |
+
# Get predictions
|
70 |
+
probs = analyze_text(text_input, tokenizer, model)
|
71 |
+
emotions_dict = dict(zip(emotions, probs))
|
72 |
+
|
73 |
+
# Display results
|
74 |
+
st.subheader("Analysis Results")
|
75 |
+
|
76 |
+
# Create columns for layout
|
77 |
+
col1, col2 = st.columns([2, 1])
|
78 |
+
|
79 |
+
with col1:
|
80 |
+
# Display plot
|
81 |
+
fig = create_emotion_plot(emotions_dict)
|
82 |
+
st.plotly_chart(fig, use_container_width=True)
|
83 |
+
|
84 |
+
with col2:
|
85 |
+
# Display scores
|
86 |
+
st.subheader("Emotion Scores:")
|
87 |
+
for emotion, score in emotions_dict.items():
|
88 |
+
st.write(f"{emotion.capitalize()}: {score:.2%}")
|
89 |
+
|
90 |
+
# Add footer
|
91 |
+
st.markdown("---")
|
92 |
+
st.markdown("""
|
93 |
+
Created with β€οΈ using Hugging Face Transformers and Streamlit.
|
94 |
+
Model: j-hartmann/emotion-english-distilroberta-base
|
95 |
+
""")
|