Spaces:
Runtime error
Runtime error
File size: 8,329 Bytes
811821c 0dd005e 811821c 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 0dd005e 82792b0 4374db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import streamlit as st
import cv2
import numpy as np
import tempfile
import time
from random import randint
# Configuration constants
LINE_IN_COLOR = (64, 255, 0)
LINE_OUT_COLOR = (0, 0, 255)
BOUNDING_BOX_COLOR = (255, 128, 0)
TRACKER_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
CENTROID_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
TEXT_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
TEXT_POSITION_BGS = (10, 50)
TEXT_POSITION_COUNT_CARS = (10, 100)
TEXT_POSITION_COUNT_TRUCKS = (10, 150)
TEXT_SIZE = 1.2
FONT = cv2.FONT_HERSHEY_SIMPLEX
VIDEO_SOURCE = "videos/Traffic_4.mp4"
# Background Subtraction Method
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
BGS_TYPE = BGS_TYPES[2]
def getKernel(KERNEL_TYPE):
if KERNEL_TYPE == "dilation":
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
if KERNEL_TYPE == "opening":
kernel = np.ones((3, 3), np.uint8)
if KERNEL_TYPE == "closing":
kernel = np.ones((11, 11), np.uint8)
return kernel
def getFilter(img, filter):
if filter == 'closing':
return cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
if filter == 'opening':
return cv2.morphologyEx(img, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
if filter == 'dilation':
return cv2.dilate(img, getKernel("dilation"), iterations=2)
if filter == 'combine':
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
dilation = cv2.dilate(opening, getKernel("dilation"), iterations=2)
return dilation
def getBGSubtractor(BGS_TYPE):
if BGS_TYPE == "GMG":
return cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120, decisionThreshold=.8)
if BGS_TYPE == "MOG":
return cv2.bgsegm.createBackgroundSubtractorMOG(history=200, nmixtures=5, backgroundRatio=.7, noiseSigma=0)
if BGS_TYPE == "MOG2":
return cv2.createBackgroundSubtractorMOG2(history=50, detectShadows=False, varThreshold=200)
if BGS_TYPE == "KNN":
return cv2.createBackgroundSubtractorKNN(history=100, dist2Threshold=400, detectShadows=True)
if BGS_TYPE == "CNT":
return cv2.bgsegm.createBackgroundSubtractorCNT(minPixelStability=15, useHistory=True,
maxPixelStability=15 * 60, isParallel=True)
print("Invalid detector")
sys.exit(1)
def getCentroid(x, y, w, h):
x1 = int(w / 2)
y1 = int(h / 2)
cx = x + x1
cy = y + y1
return (cx, cy)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
hasFrame, frame = cap.read()
if not hasFrame:
st.error("Failed to load the video.")
return None
# ROI
bbox = cv2.selectROI(frame, False)
(w1, h1, w2, h2) = bbox
frameArea = h2 * w2
minArea = int(frameArea / 250)
maxArea = 15000
line_IN = int(h1)
line_OUT = int(h2 - 20)
DOWN_limit = int(h1 / 4)
bg_subtractor = getBGSubtractor(BGS_TYPE)
frame_number = -1
cnt_cars, cnt_trucks = 0, 0
objects = []
max_p_age = 2
pid = 1
with tempfile.NamedTemporaryFile(delete=False) as output_file:
output_path = output_file.name + ".avi"
fourcc = cv2.VideoWriter_fourcc(*'XVID')
writer_video = cv2.VideoWriter(output_path, fourcc, 25, (frame.shape[1], frame.shape[0]), True)
while cap.isOpened():
ok, frame = cap.read()
if not ok:
break
roi = frame[h1:h1 + h2, w1:w1 + w2]
for i in objects:
i.age_one()
frame_number += 1
bg_mask = bg_subtractor.apply(roi)
bg_mask = getFilter(bg_mask, 'combine')
(contours, _) = cv2.findContours(bg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area > minArea and area <= maxArea:
x, y, w, h = cv2.boundingRect(cnt)
centroid = getCentroid(x, y, w, h)
cx = centroid[0]
cy = centroid[1]
new = True
cv2.rectangle(roi, (x, y), (x + 50, y - 13), TRACKER_COLOR, -1)
cv2.putText(roi, 'CAR', (x, y - 2), FONT, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
for i in objects:
if abs(x - i.getX()) <= w and abs(y - i.getY()) <= h:
new = False
i.updateCoords(cx, cy)
if i.going_DOWN(DOWN_limit):
cnt_cars += 1
break
if i.getState() == '1' and i.getDir() == 'down' and i.getY() > line_OUT:
i.setDone()
if i.timedOut():
objects.pop(objects.index(i))
del i
if new:
p = validator.MyValidator(pid, cx, cy, max_p_age)
objects.append(p)
pid += 1
cv2.circle(roi, (cx, cy), 5, CENTROID_COLOR, -1)
elif area >= maxArea:
x, y, w, h = cv2.boundingRect(cnt)
centroid = getCentroid(x, y, w, h)
cx = centroid[0]
cy = centroid[1]
new = True
cv2.rectangle(roi, (x, y), (x + 50, y - 13), TRACKER_COLOR, -1)
cv2.putText(roi, 'TRUCK', (x, y - 2), FONT, .5, (255, 255, 255), 1, cv2.LINE_AA)
for i in objects:
if abs(x - i.getX()) <= w and abs(y - i.getY()) <= h:
new = False
i.updateCoords(cx, cy)
if i.going_DOWN(DOWN_limit):
cnt_trucks += 1
break
if i.getState() == '1' and i.getDir() == 'down' and i.getY() > line_OUT:
i.setDone()
if i.timedOut():
objects.pop(objects.index(i))
del i
if new:
p = validator.MyValidator(pid, cx, cy, max_p_age)
objects.append(p)
pid += 1
cv2.circle(roi, (cx, cy), 5, CENTROID_COLOR, -1)
for i in objects:
cv2.putText(roi, str(i.getId()), (i.getX(), i.getY()), FONT, 0.3, TEXT_COLOR, 1, cv2.LINE_AA)
str_cars = 'Cars: ' + str(cnt_cars)
str_trucks = 'Trucks: ' + str(cnt_trucks)
frame = cv2.line(frame, (w1, line_IN), (w1 + w2, line_IN), LINE_IN_COLOR, 2)
frame = cv2.line(frame, (w1, h1 + line_OUT), (w1 + w2, h1 + line_OUT), LINE_OUT_COLOR, 2)
cv2.putText(frame, str_cars, TEXT_POSITION_COUNT_CARS, FONT, 1, (255, 255, 255), 3, cv2.LINE_AA)
cv2.putText(frame, str_cars, TEXT_POSITION_COUNT_CARS, FONT, 1, (232, 162, 0), 2, cv2.LINE_AA)
cv2.putText(frame, str_trucks, TEXT_POSITION_COUNT_TRUCKS, FONT, 1, (255, 255, 255), 3, cv2.LINE_AA)
cv2.putText(frame, str_trucks, TEXT_POSITION_COUNT_TRUCKS, FONT, 1, (232, 162, 0), 2, cv2.LINE_AA)
writer_video.write(frame)
if frame_number % 30 == 0:
st.image(frame, channels="BGR", use_column_width=True)
cap.release()
writer_video.release()
return output_path
def main():
st.title("Vehicle Counting and Tracking")
st.write("This application processes the video, counts vehicles, and tracks them.")
video_path = VIDEO_SOURCE
if video_path:
st.video(video_path)
st.write("Processing video...")
output_path = process_video(video_path)
if output_path:
st.write("Processing completed.")
st.video(output_path)
else:
st.write("Failed to process video.")
else:
st.error("Please upload a video file.")
if __name__ == "__main__":
main()
|