Spaces:
Sleeping
Sleeping
import gradio as gr | |
import groq | |
import io | |
import numpy as np | |
import soundfile as sf | |
import requests | |
# Function to transcribe audio using Groq | |
def transcribe_audio(audio, api_key): | |
if audio is None: | |
return "" | |
client = groq.Client(api_key=api_key) | |
# Convert audio to the format expected by the model | |
audio_data = audio[1] # Get the numpy array from the tuple | |
buffer = io.BytesIO() | |
sf.write(buffer, audio_data, audio[0], format='wav') | |
buffer.seek(0) | |
try: | |
# Use Distil-Whisper English powered by Groq for transcription | |
completion = client.audio.transcriptions.create( | |
model="distil-whisper-large-v3-en", | |
file=("audio.wav", buffer), | |
response_format="text" | |
) | |
return completion.get('text', '') # Extract transcription text from response | |
except Exception as e: | |
return f"Error in transcription: {str(e)}" | |
# Function to generate AI response using Groq | |
def generate_response(transcription, api_key): | |
if not transcription: | |
return "No transcription available. Please try speaking again." | |
client = groq.Client(api_key=api_key) | |
try: | |
# Use Llama 3 70B powered by Groq for text generation | |
completion = client.chat.completions.create( | |
model="llama3-70b-8192", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": transcription} | |
], | |
) | |
return completion.choices[0].message['content'] | |
except Exception as e: | |
return f"Error in response generation: {str(e)}" | |
# VoiceRSS TTS function | |
def text_to_speech(text, tts_api_key): | |
url = "https://api.voicerss.org/" | |
params = { | |
'key': tts_api_key, | |
'src': text, | |
'hl': 'en-us', # Language: English (US) | |
'r': '0', # Speech rate | |
'c': 'mp3', # Audio format (mp3) | |
'f': '48khz_16bit_stereo' # Frequency and bitrate | |
} | |
try: | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.content # Return the audio data | |
else: | |
return f"Error in TTS conversion: {response.status_code}" | |
except Exception as e: | |
return f"Error in TTS conversion: {str(e)}" | |
# Process audio function to handle transcription, response generation, and TTS | |
import tempfile | |
def process_audio(audio, groq_api_key, tts_api_key): | |
if not groq_api_key: | |
return "Please enter your Groq API key.", "API key is required.", None | |
transcription = transcribe_audio(audio, groq_api_key) | |
response = generate_response(transcription, groq_api_key) | |
# Convert the AI response to speech using VoiceRSS | |
audio_response = text_to_speech(response, tts_api_key) | |
if isinstance(audio_response, bytes): # Check if we received valid audio bytes | |
# Save audio response to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tmp_file.write(audio_response) | |
tmp_filepath = tmp_file.name # Get the file path | |
return transcription, response, tmp_filepath # Return the file path for Gradio audio output | |
else: | |
return transcription, response, None # If there's an error with TTS, return None for audio output | |
# Gradio interface with TTS | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
gr.Markdown("# ποΈ Groq x Gradio Voice-Powered AI Assistant with TTS") | |
api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key") | |
tts_api_key_input = gr.Textbox(type="password", label="Enter your VoiceRSS API Key") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Speak!", type="numpy") | |
with gr.Row(): | |
transcription_output = gr.Textbox(label="Transcription") | |
response_output = gr.Textbox(label="AI Assistant Response") | |
audio_output = gr.Audio(label="AI Response (Audio)", type="auto") | |
submit_button = gr.Button("Process", variant="primary") | |
submit_button.click( | |
process_audio, | |
inputs=[audio_input, api_key_input, tts_api_key_input], | |
outputs=[transcription_output, response_output, audio_output] | |
) | |
demo.launch() | |