Prathamesh1420's picture
Update app.py
7925d15 verified
import gradio as gr
import groq
import io
import numpy as np
import soundfile as sf
import requests
# Function to transcribe audio using Groq
def transcribe_audio(audio, api_key):
if audio is None:
return ""
client = groq.Client(api_key=api_key)
# Convert audio to the format expected by the model
audio_data = audio[1] # Get the numpy array from the tuple
buffer = io.BytesIO()
sf.write(buffer, audio_data, audio[0], format='wav')
buffer.seek(0)
try:
# Use Distil-Whisper English powered by Groq for transcription
completion = client.audio.transcriptions.create(
model="distil-whisper-large-v3-en",
file=("audio.wav", buffer),
response_format="text"
)
return completion.get('text', '') # Extract transcription text from response
except Exception as e:
return f"Error in transcription: {str(e)}"
# Function to generate AI response using Groq
def generate_response(transcription, api_key):
if not transcription:
return "No transcription available. Please try speaking again."
client = groq.Client(api_key=api_key)
try:
# Use Llama 3 70B powered by Groq for text generation
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": transcription}
],
)
return completion.choices[0].message['content']
except Exception as e:
return f"Error in response generation: {str(e)}"
# VoiceRSS TTS function
def text_to_speech(text, tts_api_key):
url = "https://api.voicerss.org/"
params = {
'key': tts_api_key,
'src': text,
'hl': 'en-us', # Language: English (US)
'r': '0', # Speech rate
'c': 'mp3', # Audio format (mp3)
'f': '48khz_16bit_stereo' # Frequency and bitrate
}
try:
response = requests.get(url, params=params)
if response.status_code == 200:
return response.content # Return the audio data
else:
return f"Error in TTS conversion: {response.status_code}"
except Exception as e:
return f"Error in TTS conversion: {str(e)}"
# Process audio function to handle transcription, response generation, and TTS
import tempfile
def process_audio(audio, groq_api_key, tts_api_key):
if not groq_api_key:
return "Please enter your Groq API key.", "API key is required.", None
transcription = transcribe_audio(audio, groq_api_key)
response = generate_response(transcription, groq_api_key)
# Convert the AI response to speech using VoiceRSS
audio_response = text_to_speech(response, tts_api_key)
if isinstance(audio_response, bytes): # Check if we received valid audio bytes
# Save audio response to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_file.write(audio_response)
tmp_filepath = tmp_file.name # Get the file path
return transcription, response, tmp_filepath # Return the file path for Gradio audio output
else:
return transcription, response, None # If there's an error with TTS, return None for audio output
# Gradio interface with TTS
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# πŸŽ™οΈ Groq x Gradio Voice-Powered AI Assistant with TTS")
api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key")
tts_api_key_input = gr.Textbox(type="password", label="Enter your VoiceRSS API Key")
with gr.Row():
audio_input = gr.Audio(label="Speak!", type="numpy")
with gr.Row():
transcription_output = gr.Textbox(label="Transcription")
response_output = gr.Textbox(label="AI Assistant Response")
audio_output = gr.Audio(label="AI Response (Audio)", type="auto")
submit_button = gr.Button("Process", variant="primary")
submit_button.click(
process_audio,
inputs=[audio_input, api_key_input, tts_api_key_input],
outputs=[transcription_output, response_output, audio_output]
)
demo.launch()