Spaces:
Sleeping
Sleeping
Prathamesh1420
commited on
Commit
•
1145213
1
Parent(s):
123f110
Upload 9 files
Browse files- .DS_Store +0 -0
- agenda.xlsx +0 -0
- annotation.txt +5 -0
- app.py +252 -0
- n1.mp3 +0 -0
- n2.mp3 +0 -0
- n3.mp3 +0 -0
- sad.wav +0 -0
- testing.py +17 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
agenda.xlsx
ADDED
Binary file (8.84 kB). View file
|
|
annotation.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
go to the supermarket
|
2 |
+
the house
|
3 |
+
go to the pharmacy
|
4 |
+
go to bed
|
5 |
+
wash the car
|
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyttsx3
|
2 |
+
import speech_recognition as sr
|
3 |
+
from playsound import playsound
|
4 |
+
import random
|
5 |
+
import datetime
|
6 |
+
hour = datetime.datetime.now().strftime('%H:%M')
|
7 |
+
#print(hour)
|
8 |
+
date = datetime.date.today().strftime('%d/%B/%Y')
|
9 |
+
#print(date)
|
10 |
+
date = date.split('/')
|
11 |
+
#print(date)
|
12 |
+
import webbrowser as wb
|
13 |
+
import tensorflow as tf
|
14 |
+
import numpy as np
|
15 |
+
import librosa
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
sns.set()
|
19 |
+
from modules import commands_answers, load_agenda
|
20 |
+
commands = commands_answers.commands
|
21 |
+
answers = commands_answers.answers
|
22 |
+
#print(commands)
|
23 |
+
#print(answers)
|
24 |
+
|
25 |
+
my_name = 'Bob'
|
26 |
+
|
27 |
+
# MacOS
|
28 |
+
chrome_path = 'open -a /Applications/Google\ Chrome.app %s'
|
29 |
+
# Windows
|
30 |
+
#chrome_path = 'C:/Program Files/Google/Chrome/Application/chrome.exe %s'
|
31 |
+
# Linux
|
32 |
+
# chrome_path = '/usr/bin/google-chrome %s'
|
33 |
+
|
34 |
+
def search(sentence):
|
35 |
+
wb.get(chrome_path).open('https://www.google.com/search?q=' + sentence)
|
36 |
+
|
37 |
+
#search('python programming language')
|
38 |
+
|
39 |
+
MODEL_TYPES = ['EMOTION']
|
40 |
+
def load_model_by_name(model_type):
|
41 |
+
if model_type == MODEL_TYPES[0]:
|
42 |
+
model = tf.keras.models.load_model('models/speech_emotion_recognition.hdf5')
|
43 |
+
model_dict = list(['calm', 'happy', 'fear', 'nervous', 'neutral', 'disgust', 'surprise', 'sad'])
|
44 |
+
SAMPLE_RATE = 48000
|
45 |
+
return model, model_dict, SAMPLE_RATE
|
46 |
+
|
47 |
+
#print(load_model_by_name('EMOTION'))
|
48 |
+
#print(load_model_by_name('EMOTION')[0].summary())
|
49 |
+
|
50 |
+
model_type = 'EMOTION'
|
51 |
+
loaded_model = load_model_by_name(model_type)
|
52 |
+
|
53 |
+
def predict_sound(AUDIO, SAMPLE_RATE, plot = True):
|
54 |
+
results = []
|
55 |
+
wav_data, sample_rate = librosa.load(AUDIO, sr = SAMPLE_RATE)
|
56 |
+
#print(wav_data.shape)
|
57 |
+
#print(sample_rate)
|
58 |
+
#print(wav_data)
|
59 |
+
# ' librosa ' -> 'librosa'
|
60 |
+
# https://librosa.org/doc/main/generated/librosa.effects.trim.html
|
61 |
+
clip, index = librosa.effects.trim(wav_data, top_db=60, frame_length=512, hop_length=64)
|
62 |
+
splitted_audio_data = tf.signal.frame(clip, sample_rate, sample_rate, pad_end = True, pad_value = 0)
|
63 |
+
for i, data in enumerate(splitted_audio_data.numpy()):
|
64 |
+
#print('Audio split: ', i)
|
65 |
+
#print(data.shape)
|
66 |
+
#print(data)
|
67 |
+
# Mel frequency: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
|
68 |
+
# PCA
|
69 |
+
mfccs_features = librosa.feature.mfcc(y = data, sr = sample_rate, n_mfcc=40)
|
70 |
+
#print(mfccs_features.shape)
|
71 |
+
#print(mfccs_features)
|
72 |
+
mfccs_scaled_features = np.mean(mfccs_features.T, axis = 0)
|
73 |
+
mfccs_scaled_features = mfccs_scaled_features.reshape(1, -1)
|
74 |
+
#print(mfccs_scaled_features.shape)
|
75 |
+
mfccs_scaled_features = mfccs_scaled_features[:, :, np.newaxis]
|
76 |
+
# batch
|
77 |
+
#print(mfccs_scaled_features.shape)
|
78 |
+
predictions = loaded_model[0].predict(mfccs_scaled_features)
|
79 |
+
#print(predictions)
|
80 |
+
#print(predictions.sum())
|
81 |
+
if plot:
|
82 |
+
plt.figure(figsize=(len(splitted_audio_data), 5))
|
83 |
+
plt.barh(loaded_model[1], predictions[0])
|
84 |
+
plt.tight_layout()
|
85 |
+
plt.show()
|
86 |
+
|
87 |
+
predictions = predictions.argmax(axis = 1)
|
88 |
+
#print(predictions)
|
89 |
+
predictions = predictions.astype(int).flatten()
|
90 |
+
predictions = loaded_model[1][predictions[0]]
|
91 |
+
results.append(predictions)
|
92 |
+
#print(results)
|
93 |
+
|
94 |
+
result_str = 'PART ' + str(i) + ': ' + str(predictions).upper()
|
95 |
+
#print(result_str)
|
96 |
+
|
97 |
+
count_results = [[results.count(x), x] for x in set(results)]
|
98 |
+
#print(count_results)
|
99 |
+
|
100 |
+
#print(max(count_results))
|
101 |
+
return max(count_results)
|
102 |
+
|
103 |
+
#playsound('sad.wav')
|
104 |
+
#predict_sound('sad.wav', loaded_model[2], plot=False)
|
105 |
+
|
106 |
+
def play_music_youtube(emotion):
|
107 |
+
play = False
|
108 |
+
if emotion == 'sad' or emotion == 'fear':
|
109 |
+
wb.get(chrome_path).open('https://www.youtube.com/watch?v=k32IPg4dbz0&ab_channel=Amelhorm%C3%BAsicainstrumental')
|
110 |
+
play = True
|
111 |
+
if emotion == 'nervous' or emotion == 'surprise':
|
112 |
+
wb.get(chrome_path).open('https://www.youtube.com/watch?v=pWjmpSD-ph0&ab_channel=CassioToledo')
|
113 |
+
play = True
|
114 |
+
return play
|
115 |
+
|
116 |
+
#play_music_youtube('sad')
|
117 |
+
#play_music_youtube('surprise')
|
118 |
+
#emotion = predict_sound('sad.wav', loaded_model[2], plot=False)
|
119 |
+
#print(emotion)
|
120 |
+
#play_music_youtube(emotion[1])
|
121 |
+
|
122 |
+
def speak(text):
|
123 |
+
engine = pyttsx3.init()
|
124 |
+
engine.setProperty('rate', 90) # number of words per second
|
125 |
+
engine.setProperty('volume', 1) # min: 0, max: 1
|
126 |
+
engine.say(text)
|
127 |
+
engine.runAndWait()
|
128 |
+
|
129 |
+
#speak("Testing the Assistant's Speech Synthesizer")
|
130 |
+
|
131 |
+
def listen_microphone():
|
132 |
+
microphone = sr.Recognizer()
|
133 |
+
with sr.Microphone() as source:
|
134 |
+
microphone.adjust_for_ambient_noise(source, duration=0.8)
|
135 |
+
print('Listening: ')
|
136 |
+
audio = microphone.listen(source)
|
137 |
+
with open('recordings/speech.wav', 'wb') as f:
|
138 |
+
f.write(audio.get_wav_data())
|
139 |
+
try:
|
140 |
+
# https://pypi.org/project/SpeechRecognition/
|
141 |
+
sentence = microphone.recognize_google(audio, language='en-US')
|
142 |
+
print('You said: ' + sentence)
|
143 |
+
except sr.UnknownValueError:
|
144 |
+
sentence = ''
|
145 |
+
print('Not understood')
|
146 |
+
return sentence
|
147 |
+
|
148 |
+
#playsound('recordings/speech.wav')
|
149 |
+
#listen_microphone()
|
150 |
+
|
151 |
+
def test_models():
|
152 |
+
audio_source = '/Users/jonesgranatyr/Documents/Ensino/IA Expert/Cursos/Virtual assistent/virtual_assistant/recordings/speech.wav'
|
153 |
+
prediction = predict_sound(audio_source, loaded_model[2], plot = False)
|
154 |
+
return prediction
|
155 |
+
|
156 |
+
#print(test_models())
|
157 |
+
|
158 |
+
playing = False
|
159 |
+
mode_control = False
|
160 |
+
print('[INFO] Ready to start!')
|
161 |
+
playsound('n1.mp3')
|
162 |
+
|
163 |
+
while (1):
|
164 |
+
result = listen_microphone()
|
165 |
+
|
166 |
+
if my_name in result:
|
167 |
+
result = str(result.split(my_name + ' ')[1])
|
168 |
+
result = result.lower()
|
169 |
+
#print('The assistant has been activacted!')
|
170 |
+
#print('After processing: ', result)
|
171 |
+
|
172 |
+
if result in commands[0]:
|
173 |
+
playsound('n2.mp3')
|
174 |
+
speak('I will read my list of functionalities: ' + answers[0])
|
175 |
+
|
176 |
+
if result in commands[3]:
|
177 |
+
playsound('n2.mp3')
|
178 |
+
speak('It is now ' + datetime.datetime.now().strftime('%H:%M'))
|
179 |
+
|
180 |
+
if result in commands[4]:
|
181 |
+
playsound('n2.mp3')
|
182 |
+
speak('Today is ' + date[0] + ' of ' + date[1])
|
183 |
+
|
184 |
+
if result in commands[1]:
|
185 |
+
playsound('n2.mp3')
|
186 |
+
speak('Please, tell me the activity!')
|
187 |
+
result = listen_microphone()
|
188 |
+
annotation = open('annotation.txt', mode='a+', encoding='utf-8')
|
189 |
+
annotation.write(result + '\n')
|
190 |
+
annotation.close()
|
191 |
+
speak(''.join(random.sample(answers[1], k = 1)))
|
192 |
+
speak('Want me to read the notes?')
|
193 |
+
result = listen_microphone()
|
194 |
+
if result == 'yes' or result == 'sure':
|
195 |
+
with open('annotation.txt') as file_source:
|
196 |
+
lines = file_source.readlines()
|
197 |
+
for line in lines:
|
198 |
+
speak(line)
|
199 |
+
else:
|
200 |
+
speak('Ok!')
|
201 |
+
|
202 |
+
if result in commands[2]:
|
203 |
+
playsound('n2.mp3')
|
204 |
+
speak(''.join(random.sample(answers[2], k = 1)))
|
205 |
+
result = listen_microphone()
|
206 |
+
search(result)
|
207 |
+
|
208 |
+
if result in commands[6]:
|
209 |
+
playsound('n2.mp3')
|
210 |
+
if load_agenda.load_agenda():
|
211 |
+
speak('These are the events for today:')
|
212 |
+
for i in range(len(load_agenda.load_agenda()[1])):
|
213 |
+
speak(load_agenda.load_agenda()[1][i] + ' ' + load_agenda.load_agenda()[0][i] + ' schedule for ' + str(load_agenda.load_agenda()[2][i]))
|
214 |
+
else:
|
215 |
+
speak('There are not events for today considering the current time!')
|
216 |
+
|
217 |
+
if result in commands[5]:
|
218 |
+
mode_control = True
|
219 |
+
playsound('n1.mp3')
|
220 |
+
speak('Emotion analysis mode has been activacted!')
|
221 |
+
|
222 |
+
if mode_control:
|
223 |
+
analyse = test_models()
|
224 |
+
print(f'I heard {analyse} in your voice!')
|
225 |
+
if not playing:
|
226 |
+
playing = play_music_youtube(analyse[1])
|
227 |
+
|
228 |
+
if result == 'turn off':
|
229 |
+
playsound('n2.mp3')
|
230 |
+
speak(''.join(random.sample(answers[4], k = 1)))
|
231 |
+
break
|
232 |
+
else:
|
233 |
+
playsound('n3.mp3')
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
n1.mp3
ADDED
Binary file (60.1 kB). View file
|
|
n2.mp3
ADDED
Binary file (30.5 kB). View file
|
|
n3.mp3
ADDED
Binary file (17.9 kB). View file
|
|
sad.wav
ADDED
Binary file (418 kB). View file
|
|
testing.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from playsound import playsound
|
2 |
+
#playsound('n3.mp3')
|
3 |
+
|
4 |
+
#import speech_recognition
|
5 |
+
#print('Speech Recognition:', speech_recognition.__version__)
|
6 |
+
|
7 |
+
#import pyttsx3
|
8 |
+
#pyttsx3.speak('We are now testing the library')
|
9 |
+
|
10 |
+
import tensorflow
|
11 |
+
print('TensorFlow: ', tensorflow.__version__)
|
12 |
+
import librosa
|
13 |
+
print('Librosa: ', librosa.__version__)
|
14 |
+
import matplotlib
|
15 |
+
print('Matplotlib:', matplotlib._get_version())
|
16 |
+
import seaborn
|
17 |
+
print('Seaborn: ', seaborn.__version__)
|