Chatbot_4 / main.py
Praveen0309's picture
final_commit
17b6186
raw
history blame
8.68 kB
# Import necessary libraries
from PIL import Image
from peft import PeftModel
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig
from deep_translator import GoogleTranslator
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from fastapi import FastAPI, Query, UploadFile, File, HTTPException
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse, JSONResponse
from io import BytesIO
import warnings
# from flask import Flask
# from flask_ngrok import run_with_ngrok
# app = Flask(__name__)
# run_with_ngrok(app)
app = FastAPI()
warnings.filterwarnings('ignore')
# @app.get('/echo/')
# async def echo(query_param: str):
# return {"response": query_param}
# app.mount("/", StaticFiles(directory="static", html=True), name="static")
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16)
# Load the PEFT Lora adapter
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
# model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
# model_id = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_model"
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# )
# base_model = LlavaForConditionalGeneration.from_pretrained(model_id)
# processor = AutoProcessor.from_pretrained(r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_processor")
# Load the PEFT Lora model (adapter)
# peft_lora_adapter_path = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_adapter"
# Merge the adapters into the base model
# model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
def inference(image_prompt, image):
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:"
inputs = processor(text=prompt, images=image, return_tensors="pt")
generate_ids = base_model.generate(**inputs, max_new_tokens=1024)
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
# url = "https://www.ilankelman.org/stopsigns/australia.jpg"
# url = "/kaggle/input/images/images/1921.428_web.jpg"
# image = Image.open(url)
# image = Image.open(requests.get(url, stream=True).raw)
# processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
# ... process the image and create inputs ...
# print("Generated response:", decoded_response)
return decoded_response
def deep_translator_bn_en(input_sentence):
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence)
return english_translation
def deep_translator_en_bn(input_sentence):
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence)
return bengali_translation
def google_response(image, input_sentence):
image_prompt = deep_translator_bn_en(input_sentence)
response = inference(image_prompt, image)
assistant_index = response.find("ASSISTANT:")
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
output = deep_translator_en_bn(extracted_string)
# print("বটী: ", output)
# url = input("ইমেজ url লিখুন: ")
# input_sentence = input("ছবি সম্পর্কে আপনার প্রশ্ন লিখুন: ")
return output
def facebook_bn_en(input_sentence):
# Translate Bengali to English
tokenizer.src_lang = "bn"
encoded_bn = tokenizer(input_sentence, return_tensors="pt")
generated_tokens = model.generate(**encoded_bn, forced_bos_token_id=tokenizer.get_lang_id("en"))
translated_text_en = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text_en
# print("Translated English:", translated_text_en)
def facebook_en_bn(input_sentence):
# Translate English to Bengali
# model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
tokenizer.src_lang = "en"
encoded_en = tokenizer(input_sentence, return_tensors="pt")
generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.get_lang_id("bn"))
translated_text_bn = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text_bn
def facebook_response(url, input_sentence):
url = input("ইমেজ url লিখুন: ")
input_sentence = input("ছবি সম্পর্কে আপনার প্রশ্ন লিখুন: ")
image_prompt = facebook_bn_en(input_sentence)
response = inference(image_prompt, url)
assistant_index = response.find("ASSISTANT:")
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
output = facebook_en_bn(extracted_string)
print("বটী: ", output)
return output
image_cache = {}
@app.post("/upload")
async def upload_file(file: UploadFile = File(...)):
try:
# file = request.files['file']
if file.filename.endswith('.jpg'):
contents = await file.read()
image = Image.open(BytesIO(contents))
# image = Image.open(file.stream)
# Store the image in cache (replace with a more suitable storage approach)
image_cache['image'] = image
# print("Processing complete. Image stored in cache.")
return JSONResponse(content={'status': 'সাফল্য'})
else:
# print("dfsd")
return JSONResponse(content={'status': 'ত্রুটি', 'message': 'আপলোড করা ফাইলটি একটি jpg ছবি নয়।'})
except Exception as e:
# print(e)
msg = deep_translator_en_bn(str(e))
return JSONResponse(content={'status': 'ত্রুটি', 'message': msg})
# @app.get("/get/")
# async def get_items(msg: str):
# try:
# print( msg )
# if 'image' in image_cache:
# image = image_cache['image']
# # print(image)
# query = request.args.get('msg')
# output = query
# # output = google_response(image, query)
# return output
# else:
# return "Please upload an image to continue"
# except Exception as e:
# return f"Error: {str(e)}"
@app.get("/get")
async def get_items(msg: str):
try:
# print(msg)
if 'image' in image_cache:
image = image_cache['image']
# print(image)
# output = msg
output = google_response(image, msg)
return output
else:
# return msg
return "চালিয়ে যেতে একটি ছবি আপলোড করুন"
except Exception as e:
return f"Error: {str(e)}"
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def home() -> FileResponse:
image_cache.clear()
return FileResponse(path="/app/static/index.html")
# Run the Flask app
# if __name__ == "__main__":
app.run(debug = True)
# from pymongo import MongoClient
# # Connect to MongoDB
# mongodb_client = MongoClient('mongodb://localhost:27017/')
# database_name = 'your_database'
# collection_name = 'file_store'
# db = mongodb_client[database_name]
# collection = db[collection_name]
# # Store documents with unique ID and their chunks
# for i, doc in enumerate(documents):
# doc_id = f'doc_{i}' # Create a unique ID for each document
# collection.insert_one({'_id': doc_id, 'document': doc})
# # Check if index exists, if not create a new one
# if 'index' not in collection.list_indexes():
# index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# collection.insert_one({'_id': 'index', 'index': index})
# else:
# index = collection.find_one({'_id': 'index'})['index']
# # Retrieve documents
# retrieved_text_chunks = index.as_retriever().retrieve(question)