File size: 3,769 Bytes
2bab301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e7223c
230626d
 
 
 
 
a69cbd5
 
5e7223c
a69cbd5
 
5e7223c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69cbd5
5e7223c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69cbd5
5e7223c
 
 
 
 
 
 
 
 
 
 
 
 
 
a69cbd5
5e7223c
 
 
 
 
 
 
 
 
a69cbd5
5e7223c
 
2bab301
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import altair as alt
import plotly.figure_factory as ff
import pydeck as pdk
from vega_datasets import data as vds
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_image_comparison import image_comparison


def on_input_change():
    user_input = st.session_state.user_input
    st.session_state.past.append(user_input)
    st.session_state.generated.append(
        {"data": "The messages from Bot\nWith new line", "type": "normal"}
    )


def on_btn_click():
    del st.session_state.past[:]
    del st.session_state.generated[:]


def main():
    st.title(" Corona Dashboard")
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        option = st.selectbox(" San Francisco", [" San Francisco"])
    with col2:
        option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
    if st.checkbox(" Show raw data"):
        st.write("Checkbox checked!")
    if st.button(" Visualize"):
        st.write("Button clicked!")
    st.subheader(" Global Data")
    df = pd.read_csv(
        "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
        encoding="iso-8859-1",
    )
    freq = df
    freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
    df_v = pd.read_csv(
        "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
    )
    fig = make_subplots(
        rows=2,
        cols=2,
        column_widths=[0.6, 0.4],
        row_heights=[0.4, 0.6],
        specs=[
            [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
            [None, {"type": "surface"}],
        ],
    )
    fig.add_trace(
        go.Scattergeo(
            lat=df["Latitude"],
            lon=df["Longitude"],
            mode="markers",
            hoverinfo="text",
            showlegend=False,
            marker=dict(color="crimson", size=4, opacity=0.8),
        ),
        row=1,
        col=1,
    )
    fig.add_trace(
        go.Bar(
            x=freq["x"][0:10],
            y=freq["Country"][0:10],
            marker=dict(color="crimson"),
            showlegend=False,
        ),
        row=1,
        col=2,
    )
    fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
    fig.update_geos(
        projection_type="orthographic",
        landcolor="white",
        oceancolor="MidnightBlue",
        showocean=True,
        lakecolor="LightBlue",
    )
    fig.update_xaxes(tickangle=45)
    fig.update_layout(
        template="plotly_dark",
        margin=dict(r=10, t=25, b=40, l=60),
        annotations=[
            dict(
                text="Source: NOAA",
                showarrow=False,
                xref="paper",
                yref="paper",
                x=0,
                y=0,
            )
        ],
    )
    st.plotly_chart(fig)
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.table(
            {
                "Country": ["USA", "Canada", "UK", "Australia"],
                "Population (millions)": [331, 38, 66, 25],
                "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
            }
        )
    with col2:
        df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
        fig = px.pie(
            df,
            values="pop",
            names="country",
            title="Population of American continent",
            hover_data=["lifeExp"],
            labels={"lifeExp": "life expectancy"},
        )
        fig.update_traces(textposition="inside", textinfo="percent+label")
        st.plotly_chart(fig)


if __name__ == "__main__":
    main()