Spaces:
Sleeping
Sleeping
import gradio as gr | |
from keras.models import load_model | |
from patchify import patchify, unpatchify | |
import numpy as np | |
import cv2 | |
from sklearn.preprocessing import MinMaxScaler | |
import matplotlib.pyplot as plt | |
# Define colors for classes | |
class_building = np.array([60, 16, 152]) | |
class_land = np.array([132, 41, 246]) | |
class_road = np.array([110, 193, 228]) | |
class_vegetation = np.array([254, 221, 58]) | |
class_water = np.array([226, 169, 41]) | |
class_unlabeled = np.array([155, 155, 155]) | |
# Number of classes in your segmentation task | |
total_classes = 6 # Update this with your total number of classes | |
# Define custom loss functions | |
def jaccard_coef(y_true, y_pred): | |
smooth = 1e-12 | |
intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3]) | |
union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection | |
jac = K.mean((intersection + smooth) / (union + smooth), axis=0) | |
return jac | |
def dice_loss(y_true, y_pred): | |
smooth = 1e-12 | |
intersection = K.sum(y_true * y_pred, axis=[1,2,3]) | |
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) | |
dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0) | |
return 1.0 - dice | |
def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0): | |
y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon()) | |
ce_loss = -y_true * K.log(y_pred) | |
weight = alpha * y_true * K.pow((1 - y_pred), gamma) | |
fl_loss = ce_loss * weight | |
return K.mean(K.sum(fl_loss, axis=-1)) | |
def total_loss(y_true, y_pred): | |
return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred)) | |
# Load the pre-trained model | |
model_path = 'satmodel.h5' # Replace with your model path | |
model = load_model(model_path, custom_objects={'total_loss': total_loss, 'jaccard_coef': jaccard_coef, 'dice_loss': dice_loss, 'focal_loss': focal_loss}) | |
# MinMaxScaler for normalization | |
minmaxscaler = MinMaxScaler() | |
# Function to predict the full image | |
def predict_full_image(image, patch_size, model): | |
original_shape = image.shape | |
print(f"Original image shape: {original_shape}") | |
# Pad image to make its dimensions divisible by the patch size | |
pad_height = (patch_size - image.shape[0] % patch_size) % patch_size | |
pad_width = (patch_size - image.shape[1] % patch_size) % patch_size | |
image = np.pad(image, ((0, pad_height), (0, pad_width), (0, 0)), mode='constant', constant_values=0) | |
padded_shape = image.shape | |
print(f"Padded image shape: {padded_shape}") | |
# Normalize the image | |
image = minmaxscaler.fit_transform(image.reshape(-1, image.shape[-1])).reshape(image.shape) | |
# Create patches | |
patched_images = patchify(image, (patch_size, patch_size, 3), step=patch_size) | |
print(f"Patched image shape: {patched_images.shape}") | |
predicted_patches = [] | |
# Predict on each patch | |
for i in range(patched_images.shape[0]): | |
for j in range(patched_images.shape[1]): | |
single_patch = patched_images[i, j, 0] | |
single_patch = np.expand_dims(single_patch, axis=0) | |
prediction = model.predict(single_patch) | |
predicted_patches.append(prediction[0]) | |
# Reshape predicted patches | |
predicted_patches = np.array(predicted_patches) | |
print(f"Predicted patches shape: {predicted_patches.shape}") | |
predicted_patches = predicted_patches.reshape(patched_images.shape[0], patched_images.shape[1], patch_size, patch_size, total_classes) | |
print(f"Reshaped predicted patches shape: {predicted_patches.shape}") | |
# Unpatchify the image | |
reconstructed_image = np.zeros((padded_shape[0], padded_shape[1], total_classes)) | |
for i in range(patched_images.shape[0]): | |
for j in range(patched_images.shape[1]): | |
reconstructed_image[i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size, :] = predicted_patches[i, j] | |
print(f"Reconstructed image shape (with padding): {reconstructed_image.shape}") | |
# Remove padding | |
reconstructed_image = reconstructed_image[:original_shape[0], :original_shape[1]] | |
print(f"Final reconstructed image shape: {reconstructed_image.shape}") | |
return reconstructed_image | |
# Function to process the input image | |
def process_input_image(input_image): | |
image_patch_size = 256 | |
predicted_full_image = predict_full_image(input_image, image_patch_size, model) | |
# Convert the predictions to RGB | |
predicted_full_image_rgb = np.zeros_like(input_image) | |
# Map the predicted class labels to RGB colors | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 0] = class_water | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 1] = class_land | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 2] = class_road | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 3] = class_building | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 4] = class_vegetation | |
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 5] = class_unlabeled | |
return "Image processed", predicted_full_image_rgb | |
# Gradio application | |
my_app = gr.Blocks() | |
with my_app: | |
gr.Markdown("Satellite Image Segmentation Application UI with Gradio") | |
gr.Markdown("Building: #3C1098,Land (unpaved area): #8429F6,Road: #6EC1E4,Vegetation: #FEDD3A,Water: #E2A929,Unlabeled: #9B9B9B") | |
gr.Markdown("Building: Purple,Land (unpaved area): Violet, Road:Blue, Vegetation: Gold/yellow, Water: Copper, Unlabeled: Gray") | |
with gr.Tabs(): | |
with gr.TabItem("Select your image"): | |
with gr.Row(): | |
with gr.Column(): | |
img_source = gr.Image(label="Please select source Image") | |
source_image_loader = gr.Button("Load above Image") | |
with gr.Column(): | |
output_label = gr.Label(label="Prediction Image Info ") | |
img_output = gr.Image(label="Image Output") | |
source_image_loader.click( | |
process_input_image, | |
inputs=[img_source], | |
outputs=[output_label, img_output] | |
) | |
# Launch the app | |
my_app.launch(share=True) | |
# import gradio as gr | |
# from keras.models import load_model | |
# from patchify import patchify, unpatchify | |
# import numpy as np | |
# import cv2 | |
# from sklearn.preprocessing import MinMaxScaler | |
# import matplotlib.pyplot as plt | |
# # Define colors for classes | |
# class_building = np.array([60, 16, 152]) | |
# class_land = np.array([132, 41, 246]) | |
# class_road = np.array([110, 193, 228]) | |
# class_vegetation = np.array([254, 221, 58]) | |
# class_water = np.array([226, 169, 41]) | |
# class_unlabeled = np.array([155, 155, 155]) | |
# # Number of classes in your segmentation task | |
# total_classes = 6 # Update this with your total number of classes | |
# # Define custom loss functions | |
# def jaccard_coef(y_true, y_pred): | |
# smooth = 1e-12 | |
# intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3]) | |
# union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection | |
# jac = K.mean((intersection + smooth) / (union + smooth), axis=0) | |
# return jac | |
# def dice_loss(y_true, y_pred): | |
# smooth = 1e-12 | |
# intersection = K.sum(y_true * y_pred, axis=[1,2,3]) | |
# union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) | |
# dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0) | |
# return 1.0 - dice | |
# def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0): | |
# y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon()) | |
# ce_loss = -y_true * K.log(y_pred) | |
# weight = alpha * y_true * K.pow((1 - y_pred), gamma) | |
# fl_loss = ce_loss * weight | |
# return K.mean(K.sum(fl_loss, axis=-1)) | |
# def total_loss(y_true, y_pred): | |
# return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred)) | |
# # Load the pre-trained model | |
# model_path = 'satmodel.h5' # Replace with your model path | |
# model = load_model(model_path, custom_objects={'total_loss': total_loss, 'jaccard_coef': jaccard_coef, 'dice_loss': dice_loss, 'focal_loss': focal_loss}) | |
# # MinMaxScaler for normalization | |
# minmaxscaler = MinMaxScaler() | |
# # Function to predict the full image | |
# def predict_full_image(image, patch_size, model): | |
# original_shape = image.shape | |
# print(f"Original image shape: {original_shape}") | |
# # Pad image to make its dimensions divisible by the patch size | |
# pad_height = (patch_size - image.shape[0] % patch_size) % patch_size | |
# pad_width = (patch_size - image.shape[1] % patch_size) % patch_size | |
# image = np.pad(image, ((0, pad_height), (0, pad_width), (0, 0)), mode='constant', constant_values=0) | |
# padded_shape = image.shape | |
# print(f"Padded image shape: {padded_shape}") | |
# # Normalize the image | |
# image = minmaxscaler.fit_transform(image.reshape(-1, image.shape[-1])).reshape(image.shape) | |
# # Create patches | |
# patched_images = patchify(image, (patch_size, patch_size, 3), step=patch_size) | |
# print(f"Patched image shape: {patched_images.shape}") | |
# predicted_patches = [] | |
# # Predict on each patch | |
# for i in range(patched_images.shape[0]): | |
# for j in range(patched_images.shape[1]): | |
# single_patch = patched_images[i, j, 0] | |
# single_patch = np.expand_dims(single_patch, axis=0) | |
# prediction = model.predict(single_patch) | |
# predicted_patches.append(prediction[0]) | |
# # Reshape predicted patches | |
# predicted_patches = np.array(predicted_patches) | |
# print(f"Predicted patches shape: {predicted_patches.shape}") | |
# predicted_patches = predicted_patches.reshape(patched_images.shape[0], patched_images.shape[1], patch_size, patch_size, total_classes) | |
# print(f"Reshaped predicted patches shape: {predicted_patches.shape}") | |
# # Unpatchify the image | |
# reconstructed_image = np.zeros((padded_shape[0], padded_shape[1], total_classes)) | |
# for i in range(patched_images.shape[0]): | |
# for j in range(patched_images.shape[1]): | |
# reconstructed_image[i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size, :] = predicted_patches[i, j] | |
# print(f"Reconstructed image shape (with padding): {reconstructed_image.shape}") | |
# # Remove padding | |
# reconstructed_image = reconstructed_image[:original_shape[0], :original_shape[1]] | |
# print(f"Final reconstructed image shape: {reconstructed_image.shape}") | |
# return reconstructed_image | |
# # Function to process the input image | |
# def process_input_image(input_image): | |
# image_patch_size = 256 | |
# predicted_full_image = predict_full_image(input_image, image_patch_size, model) | |
# # Convert the predictions to RGB | |
# predicted_full_image_rgb = np.zeros_like(input_image) | |
# # Map the predicted class labels to RGB colors | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 0] = class_water | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 1] = class_land | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 2] = class_road | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 3] = class_building | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 4] = class_vegetation | |
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 5] = class_unlabeled | |
# return "Image processed", predicted_full_image_rgb | |
# # Gradio application | |
# my_app = gr.Blocks() | |
# with my_app: | |
# gr.Markdown("Satellite Image Segmentation Application UI with Gradio") | |
# with gr.Tabs(): | |
# with gr.TabItem("Select your image"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# img_source = gr.Image(label="Please select source Image") | |
# source_image_loader = gr.Button("Load above Image") | |
# with gr.Column(): | |
# output_label = gr.Label(label="Image Info") | |
# img_output = gr.Image(label="Image Output") | |
# source_image_loader.click( | |
# process_input_image, | |
# inputs=[img_source], | |
# outputs=[output_label, img_output] | |
# ) | |
# # Launch the app | |
# my_app.launch() | |
# import os | |
# import cv2 | |
# from PIL import Image | |
# import numpy as np | |
# from matplotlib import pyplot as plt | |
# import random | |
# import gradio as gr | |
# from keras import backend as K | |
# from keras.models import load_model | |
# def jaccard_coef(y_true, y_pred): | |
# y_true_flatten = K.flatten(y_true) | |
# y_pred_flatten = K.flatten(y_pred) | |
# intersection = K.sum(y_true_flatten * y_pred_flatten) | |
# final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0) | |
# return final_coef_value | |
# # Define Dice Loss | |
# def dice_loss(y_true, y_pred): | |
# smooth = 1e-12 | |
# intersection = K.sum(y_true * y_pred, axis=[1,2,3]) | |
# union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) | |
# dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0) | |
# return 1.0 - dice | |
# # Define Focal Loss | |
# def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0): | |
# y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon()) | |
# ce_loss = -y_true * K.log(y_pred) | |
# weight = alpha * y_true * K.pow((1 - y_pred), gamma) | |
# fl_loss = ce_loss * weight | |
# return K.mean(K.sum(fl_loss, axis=-1)) | |
# # Define Total Loss | |
# def total_loss(y_true, y_pred): | |
# return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred)) | |
# weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666] | |
# from keras.models import load_model | |
# import numpy as np | |
# from PIL import Image | |
# import matplotlib.pyplot as plt | |
# saved_model=load_model('satmodel.h5', custom_objects={'total_loss': total_loss, 'dice_loss': dice_loss, 'focal_loss': focal_loss, 'jaccard_coef': jaccard_coef}) | |
# # def process_input_image(image_source): | |
# # image = np.expand_dims(image_source, 0) | |
# # prediction = saved_model.predict(image) | |
# # predicted_image = np.argmax(prediction, axis=3) | |
# # predicted_image = predicted_image[0,:,:] | |
# # predicted_image = predicted_image * 50 | |
# # return 'Predicted Masked Image', predicted_image | |
# import matplotlib.pyplot as plt | |
# import matplotlib.colors as mcolors | |
# # # Define the image processing function | |
# # Define the image processing function | |
# def process_input_image(image): | |
# image = Image.fromarray(image) | |
# image = image.convert('RGB') # Convert the image to RGB | |
# image = image.resize((256, 256)) | |
# image = np.array(image) | |
# image = np.expand_dims(image, 0) | |
# prediction = saved_model.predict(image) | |
# predicted_image = np.argmax(prediction, axis=3) | |
# predicted_image = predicted_image[0,:,:] | |
# predicted_image = predicted_image * 50 | |
# # Apply a colormap to the predicted image | |
# cmap = plt.get_cmap('viridis') # You can choose any colormap you prefer | |
# colored_image = cmap(predicted_image / predicted_image.max()) # Normalize to [0, 1] | |
# colored_image = (colored_image[:, :, :3] * 255).astype(np.uint8) # Convert to RGB and scale to [0, 255] | |
# return 'Predicted Masked Image', colored_image | |
# # return 'Predicted Masked Image', predicted_image | |
# my_app = gr.Blocks() | |
# with my_app: | |
# gr.Markdown("Statellite Image Segmentation Application UI with Gradio") | |
# with gr.Tabs(): | |
# with gr.TabItem("Select your image"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# img_source = gr.Image(label="Please select source Image") | |
# source_image_loader = gr.Button("Load above Image") | |
# with gr.Column(): | |
# output_label = gr.Label(label="Image Info") | |
# img_output = gr.Image(label="Image Output") | |
# source_image_loader.click( | |
# process_input_image, | |
# [ | |
# img_source | |
# ], | |
# [ | |
# output_label, | |
# img_output | |
# ] | |
# ) | |
# my_app.launch(debug=True,share=True) | |