Prerak51's picture
Update app.py
ec2de17 verified
import gradio as gr
from keras.models import load_model
from patchify import patchify, unpatchify
import numpy as np
import cv2
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
# Define colors for classes
class_building = np.array([60, 16, 152])
class_land = np.array([132, 41, 246])
class_road = np.array([110, 193, 228])
class_vegetation = np.array([254, 221, 58])
class_water = np.array([226, 169, 41])
class_unlabeled = np.array([155, 155, 155])
# Number of classes in your segmentation task
total_classes = 6 # Update this with your total number of classes
# Define custom loss functions
def jaccard_coef(y_true, y_pred):
smooth = 1e-12
intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3])
union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection
jac = K.mean((intersection + smooth) / (union + smooth), axis=0)
return jac
def dice_loss(y_true, y_pred):
smooth = 1e-12
intersection = K.sum(y_true * y_pred, axis=[1,2,3])
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
return 1.0 - dice
def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0):
y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())
ce_loss = -y_true * K.log(y_pred)
weight = alpha * y_true * K.pow((1 - y_pred), gamma)
fl_loss = ce_loss * weight
return K.mean(K.sum(fl_loss, axis=-1))
def total_loss(y_true, y_pred):
return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred))
# Load the pre-trained model
model_path = 'satmodel.h5' # Replace with your model path
model = load_model(model_path, custom_objects={'total_loss': total_loss, 'jaccard_coef': jaccard_coef, 'dice_loss': dice_loss, 'focal_loss': focal_loss})
# MinMaxScaler for normalization
minmaxscaler = MinMaxScaler()
# Function to predict the full image
def predict_full_image(image, patch_size, model):
original_shape = image.shape
print(f"Original image shape: {original_shape}")
# Pad image to make its dimensions divisible by the patch size
pad_height = (patch_size - image.shape[0] % patch_size) % patch_size
pad_width = (patch_size - image.shape[1] % patch_size) % patch_size
image = np.pad(image, ((0, pad_height), (0, pad_width), (0, 0)), mode='constant', constant_values=0)
padded_shape = image.shape
print(f"Padded image shape: {padded_shape}")
# Normalize the image
image = minmaxscaler.fit_transform(image.reshape(-1, image.shape[-1])).reshape(image.shape)
# Create patches
patched_images = patchify(image, (patch_size, patch_size, 3), step=patch_size)
print(f"Patched image shape: {patched_images.shape}")
predicted_patches = []
# Predict on each patch
for i in range(patched_images.shape[0]):
for j in range(patched_images.shape[1]):
single_patch = patched_images[i, j, 0]
single_patch = np.expand_dims(single_patch, axis=0)
prediction = model.predict(single_patch)
predicted_patches.append(prediction[0])
# Reshape predicted patches
predicted_patches = np.array(predicted_patches)
print(f"Predicted patches shape: {predicted_patches.shape}")
predicted_patches = predicted_patches.reshape(patched_images.shape[0], patched_images.shape[1], patch_size, patch_size, total_classes)
print(f"Reshaped predicted patches shape: {predicted_patches.shape}")
# Unpatchify the image
reconstructed_image = np.zeros((padded_shape[0], padded_shape[1], total_classes))
for i in range(patched_images.shape[0]):
for j in range(patched_images.shape[1]):
reconstructed_image[i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size, :] = predicted_patches[i, j]
print(f"Reconstructed image shape (with padding): {reconstructed_image.shape}")
# Remove padding
reconstructed_image = reconstructed_image[:original_shape[0], :original_shape[1]]
print(f"Final reconstructed image shape: {reconstructed_image.shape}")
return reconstructed_image
# Function to process the input image
def process_input_image(input_image):
image_patch_size = 256
predicted_full_image = predict_full_image(input_image, image_patch_size, model)
# Convert the predictions to RGB
predicted_full_image_rgb = np.zeros_like(input_image)
# Map the predicted class labels to RGB colors
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 0] = class_water
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 1] = class_land
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 2] = class_road
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 3] = class_building
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 4] = class_vegetation
predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 5] = class_unlabeled
return "Image processed", predicted_full_image_rgb
# Gradio application
my_app = gr.Blocks()
with my_app:
gr.Markdown("Satellite Image Segmentation Application UI with Gradio")
gr.Markdown("Building: #3C1098,Land (unpaved area): #8429F6,Road: #6EC1E4,Vegetation: #FEDD3A,Water: #E2A929,Unlabeled: #9B9B9B")
gr.Markdown("Building: Purple,Land (unpaved area): Violet, Road:Blue, Vegetation: Gold/yellow, Water: Copper, Unlabeled: Gray")
with gr.Tabs():
with gr.TabItem("Select your image"):
with gr.Row():
with gr.Column():
img_source = gr.Image(label="Please select source Image")
source_image_loader = gr.Button("Load above Image")
with gr.Column():
output_label = gr.Label(label="Prediction Image Info ")
img_output = gr.Image(label="Image Output")
source_image_loader.click(
process_input_image,
inputs=[img_source],
outputs=[output_label, img_output]
)
# Launch the app
my_app.launch(share=True)
# import gradio as gr
# from keras.models import load_model
# from patchify import patchify, unpatchify
# import numpy as np
# import cv2
# from sklearn.preprocessing import MinMaxScaler
# import matplotlib.pyplot as plt
# # Define colors for classes
# class_building = np.array([60, 16, 152])
# class_land = np.array([132, 41, 246])
# class_road = np.array([110, 193, 228])
# class_vegetation = np.array([254, 221, 58])
# class_water = np.array([226, 169, 41])
# class_unlabeled = np.array([155, 155, 155])
# # Number of classes in your segmentation task
# total_classes = 6 # Update this with your total number of classes
# # Define custom loss functions
# def jaccard_coef(y_true, y_pred):
# smooth = 1e-12
# intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3])
# union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection
# jac = K.mean((intersection + smooth) / (union + smooth), axis=0)
# return jac
# def dice_loss(y_true, y_pred):
# smooth = 1e-12
# intersection = K.sum(y_true * y_pred, axis=[1,2,3])
# union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
# dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
# return 1.0 - dice
# def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0):
# y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())
# ce_loss = -y_true * K.log(y_pred)
# weight = alpha * y_true * K.pow((1 - y_pred), gamma)
# fl_loss = ce_loss * weight
# return K.mean(K.sum(fl_loss, axis=-1))
# def total_loss(y_true, y_pred):
# return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred))
# # Load the pre-trained model
# model_path = 'satmodel.h5' # Replace with your model path
# model = load_model(model_path, custom_objects={'total_loss': total_loss, 'jaccard_coef': jaccard_coef, 'dice_loss': dice_loss, 'focal_loss': focal_loss})
# # MinMaxScaler for normalization
# minmaxscaler = MinMaxScaler()
# # Function to predict the full image
# def predict_full_image(image, patch_size, model):
# original_shape = image.shape
# print(f"Original image shape: {original_shape}")
# # Pad image to make its dimensions divisible by the patch size
# pad_height = (patch_size - image.shape[0] % patch_size) % patch_size
# pad_width = (patch_size - image.shape[1] % patch_size) % patch_size
# image = np.pad(image, ((0, pad_height), (0, pad_width), (0, 0)), mode='constant', constant_values=0)
# padded_shape = image.shape
# print(f"Padded image shape: {padded_shape}")
# # Normalize the image
# image = minmaxscaler.fit_transform(image.reshape(-1, image.shape[-1])).reshape(image.shape)
# # Create patches
# patched_images = patchify(image, (patch_size, patch_size, 3), step=patch_size)
# print(f"Patched image shape: {patched_images.shape}")
# predicted_patches = []
# # Predict on each patch
# for i in range(patched_images.shape[0]):
# for j in range(patched_images.shape[1]):
# single_patch = patched_images[i, j, 0]
# single_patch = np.expand_dims(single_patch, axis=0)
# prediction = model.predict(single_patch)
# predicted_patches.append(prediction[0])
# # Reshape predicted patches
# predicted_patches = np.array(predicted_patches)
# print(f"Predicted patches shape: {predicted_patches.shape}")
# predicted_patches = predicted_patches.reshape(patched_images.shape[0], patched_images.shape[1], patch_size, patch_size, total_classes)
# print(f"Reshaped predicted patches shape: {predicted_patches.shape}")
# # Unpatchify the image
# reconstructed_image = np.zeros((padded_shape[0], padded_shape[1], total_classes))
# for i in range(patched_images.shape[0]):
# for j in range(patched_images.shape[1]):
# reconstructed_image[i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size, :] = predicted_patches[i, j]
# print(f"Reconstructed image shape (with padding): {reconstructed_image.shape}")
# # Remove padding
# reconstructed_image = reconstructed_image[:original_shape[0], :original_shape[1]]
# print(f"Final reconstructed image shape: {reconstructed_image.shape}")
# return reconstructed_image
# # Function to process the input image
# def process_input_image(input_image):
# image_patch_size = 256
# predicted_full_image = predict_full_image(input_image, image_patch_size, model)
# # Convert the predictions to RGB
# predicted_full_image_rgb = np.zeros_like(input_image)
# # Map the predicted class labels to RGB colors
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 0] = class_water
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 1] = class_land
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 2] = class_road
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 3] = class_building
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 4] = class_vegetation
# predicted_full_image_rgb[predicted_full_image.argmax(axis=-1) == 5] = class_unlabeled
# return "Image processed", predicted_full_image_rgb
# # Gradio application
# my_app = gr.Blocks()
# with my_app:
# gr.Markdown("Satellite Image Segmentation Application UI with Gradio")
# with gr.Tabs():
# with gr.TabItem("Select your image"):
# with gr.Row():
# with gr.Column():
# img_source = gr.Image(label="Please select source Image")
# source_image_loader = gr.Button("Load above Image")
# with gr.Column():
# output_label = gr.Label(label="Image Info")
# img_output = gr.Image(label="Image Output")
# source_image_loader.click(
# process_input_image,
# inputs=[img_source],
# outputs=[output_label, img_output]
# )
# # Launch the app
# my_app.launch()
# import os
# import cv2
# from PIL import Image
# import numpy as np
# from matplotlib import pyplot as plt
# import random
# import gradio as gr
# from keras import backend as K
# from keras.models import load_model
# def jaccard_coef(y_true, y_pred):
# y_true_flatten = K.flatten(y_true)
# y_pred_flatten = K.flatten(y_pred)
# intersection = K.sum(y_true_flatten * y_pred_flatten)
# final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0)
# return final_coef_value
# # Define Dice Loss
# def dice_loss(y_true, y_pred):
# smooth = 1e-12
# intersection = K.sum(y_true * y_pred, axis=[1,2,3])
# union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
# dice = K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
# return 1.0 - dice
# # Define Focal Loss
# def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0):
# y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())
# ce_loss = -y_true * K.log(y_pred)
# weight = alpha * y_true * K.pow((1 - y_pred), gamma)
# fl_loss = ce_loss * weight
# return K.mean(K.sum(fl_loss, axis=-1))
# # Define Total Loss
# def total_loss(y_true, y_pred):
# return dice_loss(y_true, y_pred) + (1 * focal_loss(y_true, y_pred))
# weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666]
# from keras.models import load_model
# import numpy as np
# from PIL import Image
# import matplotlib.pyplot as plt
# saved_model=load_model('satmodel.h5', custom_objects={'total_loss': total_loss, 'dice_loss': dice_loss, 'focal_loss': focal_loss, 'jaccard_coef': jaccard_coef})
# # def process_input_image(image_source):
# # image = np.expand_dims(image_source, 0)
# # prediction = saved_model.predict(image)
# # predicted_image = np.argmax(prediction, axis=3)
# # predicted_image = predicted_image[0,:,:]
# # predicted_image = predicted_image * 50
# # return 'Predicted Masked Image', predicted_image
# import matplotlib.pyplot as plt
# import matplotlib.colors as mcolors
# # # Define the image processing function
# # Define the image processing function
# def process_input_image(image):
# image = Image.fromarray(image)
# image = image.convert('RGB') # Convert the image to RGB
# image = image.resize((256, 256))
# image = np.array(image)
# image = np.expand_dims(image, 0)
# prediction = saved_model.predict(image)
# predicted_image = np.argmax(prediction, axis=3)
# predicted_image = predicted_image[0,:,:]
# predicted_image = predicted_image * 50
# # Apply a colormap to the predicted image
# cmap = plt.get_cmap('viridis') # You can choose any colormap you prefer
# colored_image = cmap(predicted_image / predicted_image.max()) # Normalize to [0, 1]
# colored_image = (colored_image[:, :, :3] * 255).astype(np.uint8) # Convert to RGB and scale to [0, 255]
# return 'Predicted Masked Image', colored_image
# # return 'Predicted Masked Image', predicted_image
# my_app = gr.Blocks()
# with my_app:
# gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
# with gr.Tabs():
# with gr.TabItem("Select your image"):
# with gr.Row():
# with gr.Column():
# img_source = gr.Image(label="Please select source Image")
# source_image_loader = gr.Button("Load above Image")
# with gr.Column():
# output_label = gr.Label(label="Image Info")
# img_output = gr.Image(label="Image Output")
# source_image_loader.click(
# process_input_image,
# [
# img_source
# ],
# [
# output_label,
# img_output
# ]
# )
# my_app.launch(debug=True,share=True)