Spaces:
Runtime error
Runtime error
Prgckwb
commited on
Commit
·
23c37e5
1
Parent(s):
3ca046d
:tada: init
Browse files- .gitignore +8 -0
- app.py +317 -4
- requirements.txt +9 -0
.gitignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Example user template template
|
| 2 |
+
### Example user template
|
| 3 |
+
|
| 4 |
+
# IntelliJ project files
|
| 5 |
+
.idea
|
| 6 |
+
*.iml
|
| 7 |
+
out
|
| 8 |
+
gen
|
app.py
CHANGED
|
@@ -1,8 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dataclasses
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
warnings.filterwarnings("ignore")
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 14 |
+
from diffusers.models.attention_processor import AttnProcessor, Attention
|
| 15 |
+
from rich import traceback
|
| 16 |
+
from torchvision.transforms.functional import to_tensor
|
| 17 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
|
| 20 |
+
MODEL_ID = "CompVis/stable-diffusion-v1-4"
|
| 21 |
+
SEED = 1117
|
| 22 |
+
UNET_TIMESTEP = 1
|
| 23 |
+
|
| 24 |
+
traceback.install()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@dataclasses.dataclass
|
| 28 |
+
class AttentionStore:
|
| 29 |
+
index: int
|
| 30 |
+
query: torch.Tensor
|
| 31 |
+
key: torch.Tensor
|
| 32 |
+
value: torch.Tensor
|
| 33 |
+
attention_probs: torch.Tensor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class NewAttnProcessor(AttnProcessor):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
save_uncond_attention: bool = True,
|
| 40 |
+
save_cond_attention: bool = True,
|
| 41 |
+
max_cross_attention_maps: int = 64,
|
| 42 |
+
max_self_attention_maps: int = 64,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.save_uncond_attn = save_uncond_attention
|
| 46 |
+
self.save_cond_attn = save_cond_attention
|
| 47 |
+
self.max_cross_size = max_cross_attention_maps
|
| 48 |
+
self.max_self_size = max_self_attention_maps
|
| 49 |
+
|
| 50 |
+
self.cross_attention_stores = []
|
| 51 |
+
self.self_attention_stores = []
|
| 52 |
+
|
| 53 |
+
def _save_attention_store(
|
| 54 |
+
self,
|
| 55 |
+
is_cross: bool,
|
| 56 |
+
q: torch.Tensor,
|
| 57 |
+
k: torch.Tensor,
|
| 58 |
+
v: torch.Tensor,
|
| 59 |
+
attn_probs: torch.Tensor
|
| 60 |
+
) -> None:
|
| 61 |
+
# Function to split tensors based on conditional probability
|
| 62 |
+
def split_tensors(tensor):
|
| 63 |
+
half_size = tensor.shape[0] // 2
|
| 64 |
+
return tensor[:half_size], tensor[half_size:]
|
| 65 |
+
|
| 66 |
+
# Split attention probabilities and q, k, v tensors
|
| 67 |
+
uncond_attn_probs, cond_attn_probs = split_tensors(attn_probs)
|
| 68 |
+
uncond_q, cond_q = split_tensors(q)
|
| 69 |
+
uncond_k, cond_k = split_tensors(k)
|
| 70 |
+
uncond_v, cond_v = split_tensors(v)
|
| 71 |
+
|
| 72 |
+
# Select tensors based on flags
|
| 73 |
+
if self.save_cond_attn and self.save_uncond_attn:
|
| 74 |
+
selected_probs, selected_q, selected_k, selected_v = attn_probs, q, k, v
|
| 75 |
+
elif self.save_cond_attn:
|
| 76 |
+
selected_probs, selected_q, selected_k, selected_v = cond_attn_probs, cond_q, cond_k, cond_v
|
| 77 |
+
elif self.save_uncond_attn:
|
| 78 |
+
selected_probs, selected_q, selected_k, selected_v = uncond_attn_probs, uncond_q, uncond_k, uncond_v
|
| 79 |
+
else:
|
| 80 |
+
return
|
| 81 |
+
|
| 82 |
+
# Determine max size based on attention type (cross or self)
|
| 83 |
+
max_size = self.max_cross_size if is_cross else self.max_self_size
|
| 84 |
+
|
| 85 |
+
# Filter out large attention maps
|
| 86 |
+
if selected_probs.shape[1] > max_size ** 2:
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
# Create and append attention store object
|
| 90 |
+
store = AttentionStore(
|
| 91 |
+
index=len(self.cross_attention_stores) if is_cross else len(self.self_attention_stores),
|
| 92 |
+
query=selected_q,
|
| 93 |
+
key=selected_k,
|
| 94 |
+
value=selected_v,
|
| 95 |
+
attention_probs=selected_probs
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
target_store = self.cross_attention_stores if is_cross else self.self_attention_stores
|
| 99 |
+
target_store.append(store)
|
| 100 |
+
return
|
| 101 |
+
|
| 102 |
+
def __call__(
|
| 103 |
+
self,
|
| 104 |
+
attn: Attention,
|
| 105 |
+
hidden_states: torch.FloatTensor,
|
| 106 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 107 |
+
attention_mask: torch.FloatTensor = None,
|
| 108 |
+
temb: torch.FloatTensor = None,
|
| 109 |
+
*args,
|
| 110 |
+
**kwargs,
|
| 111 |
+
) -> torch.Tensor:
|
| 112 |
+
residual = hidden_states
|
| 113 |
+
|
| 114 |
+
if attn.spatial_norm is not None:
|
| 115 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 116 |
+
|
| 117 |
+
input_ndim = hidden_states.ndim
|
| 118 |
+
|
| 119 |
+
if input_ndim == 4:
|
| 120 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 121 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 122 |
+
|
| 123 |
+
batch_size, sequence_length, _ = (
|
| 124 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 125 |
+
)
|
| 126 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 127 |
+
|
| 128 |
+
if attn.group_norm is not None:
|
| 129 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 130 |
+
|
| 131 |
+
query = attn.to_q(hidden_states)
|
| 132 |
+
|
| 133 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 134 |
+
|
| 135 |
+
if encoder_hidden_states is None:
|
| 136 |
+
encoder_hidden_states = hidden_states
|
| 137 |
+
elif attn.norm_cross:
|
| 138 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 139 |
+
|
| 140 |
+
key = attn.to_k(encoder_hidden_states)
|
| 141 |
+
value = attn.to_v(encoder_hidden_states)
|
| 142 |
+
|
| 143 |
+
query = attn.head_to_batch_dim(query)
|
| 144 |
+
key = attn.head_to_batch_dim(key)
|
| 145 |
+
value = attn.head_to_batch_dim(value)
|
| 146 |
+
|
| 147 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 148 |
+
|
| 149 |
+
# Save attention maps
|
| 150 |
+
self._save_attention_store(is_cross=is_cross_attention, q=query, k=key, v=value, attn_probs=attention_probs)
|
| 151 |
+
|
| 152 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 153 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 154 |
+
|
| 155 |
+
# linear proj
|
| 156 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 157 |
+
# dropout
|
| 158 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 159 |
+
|
| 160 |
+
if input_ndim == 4:
|
| 161 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 162 |
+
|
| 163 |
+
if attn.residual_connection:
|
| 164 |
+
hidden_states = hidden_states + residual
|
| 165 |
+
|
| 166 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 167 |
+
|
| 168 |
+
return hidden_states
|
| 169 |
+
|
| 170 |
+
def reset_attention_stores(self) -> None:
|
| 171 |
+
self.cross_attention_stores = []
|
| 172 |
+
self.self_attention_stores = []
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 177 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(MODEL_ID, subfolder="tokenizer")
|
| 178 |
+
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained(MODEL_ID, subfolder="text_encoder").to(device)
|
| 179 |
+
unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(MODEL_ID, subfolder="unet").to(device)
|
| 180 |
+
vae: AutoencoderKL = AutoencoderKL.from_pretrained(MODEL_ID, subfolder="vae").to(device)
|
| 181 |
+
|
| 182 |
+
unet.set_attn_processor(
|
| 183 |
+
NewAttnProcessor(
|
| 184 |
+
save_uncond_attention=False,
|
| 185 |
+
save_cond_attention=True,
|
| 186 |
+
)
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
@torch.inference_mode()
|
| 191 |
+
def inference(image: Image.Image, prompt: str, progress=gr.Progress(track_tqdm=True)):
|
| 192 |
+
progress(0, "Initializing...")
|
| 193 |
+
image = image.convert("RGB").resize((512, 512))
|
| 194 |
+
image = to_tensor(image).unsqueeze(0).to(device)
|
| 195 |
+
|
| 196 |
+
progress(0.1, "Generating text embeddings...")
|
| 197 |
+
input_ids = tokenizer(
|
| 198 |
+
prompt,
|
| 199 |
+
return_tensors="pt",
|
| 200 |
+
padding="max_length",
|
| 201 |
+
truncation=True,
|
| 202 |
+
max_length=tokenizer.model_max_length,
|
| 203 |
+
).input_ids.to(device)
|
| 204 |
+
|
| 205 |
+
n_cond_tokens = len(
|
| 206 |
+
tokenizer(
|
| 207 |
+
prompt,
|
| 208 |
+
return_tensors="pt",
|
| 209 |
+
truncation=True,
|
| 210 |
+
).input_ids[0]
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
cond_text_embeddings = text_encoder(input_ids).last_hidden_state[0].to(device)
|
| 214 |
+
|
| 215 |
+
uncond_input_ids = tokenizer(
|
| 216 |
+
"",
|
| 217 |
+
return_tensors="pt",
|
| 218 |
+
padding="max_length",
|
| 219 |
+
truncation=True,
|
| 220 |
+
max_length=tokenizer.model_max_length,
|
| 221 |
+
).input_ids.to(device)
|
| 222 |
+
uncond_text_embeddings = text_encoder(uncond_input_ids).last_hidden_state[0].to(device)
|
| 223 |
+
|
| 224 |
+
text_embeddings = torch.stack([uncond_text_embeddings, cond_text_embeddings], dim=0)
|
| 225 |
+
|
| 226 |
+
progress(0.2, "Encoding the input image...")
|
| 227 |
+
init_image = image.to(device)
|
| 228 |
+
init_latent_dist = vae.encode(init_image).latent_dist
|
| 229 |
+
|
| 230 |
+
# Fix the random seed for reproducibility
|
| 231 |
+
progress(0.3, "Generating the latents...")
|
| 232 |
+
generator = torch.Generator(device=device).manual_seed(SEED)
|
| 233 |
+
latent = init_latent_dist.sample(generator=generator)
|
| 234 |
+
latent = latent * vae.config['scaling_factor'] # scaling_factor = 0.18215
|
| 235 |
+
latents = latent.expand(len(image), unet.config['in_channels'], 512 // 8, 512 // 8)
|
| 236 |
+
latents_input = torch.cat([latents] * 2).to(device)
|
| 237 |
+
|
| 238 |
+
progress(0.5, "Forwarding the UNet model...")
|
| 239 |
+
_ = unet(latents_input, UNET_TIMESTEP, encoder_hidden_states=text_embeddings)
|
| 240 |
+
|
| 241 |
+
attn_processor = next(iter(unet.attn_processors.values()))
|
| 242 |
+
cross_attention_stores = attn_processor.cross_attention_stores
|
| 243 |
+
|
| 244 |
+
progress(0.7, "Processing the cross attention maps...")
|
| 245 |
+
cross_attention_probs_list = []
|
| 246 |
+
# 事前に保存しておいた、全ての Cross-Attention 層の出力を取得
|
| 247 |
+
for i, cross_attn_store in enumerate(cross_attention_stores):
|
| 248 |
+
cross_attn_probs = cross_attn_store.attention_probs # (8, 8x8~64x64, 77)
|
| 249 |
+
n_heads, scale_pow, n_tokens = cross_attn_probs.shape
|
| 250 |
+
|
| 251 |
+
# scale: 8, 16, 32, 64
|
| 252 |
+
scale = int(np.sqrt(scale_pow))
|
| 253 |
+
|
| 254 |
+
# Multi-head Attentionの平均を取って、1つのAttention Mapにする
|
| 255 |
+
mean_cross_attn_probs = (
|
| 256 |
+
cross_attn_probs
|
| 257 |
+
.permute(0, 2, 1) # (8, 77, 8x8~64x64)
|
| 258 |
+
.reshape(n_heads, n_tokens, scale, scale) # (8, 77, 8~64, 8~64)
|
| 259 |
+
.mean(dim=0) # (77, 8~64, 8~64)
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# scale を 全て 512x512 に合わせる
|
| 263 |
+
mean_cross_attn_probs = F.interpolate(
|
| 264 |
+
mean_cross_attn_probs.unsqueeze(0),
|
| 265 |
+
size=(512, 512),
|
| 266 |
+
mode='bilinear',
|
| 267 |
+
align_corners=True
|
| 268 |
+
).squeeze(0) # (77, 512, 512)
|
| 269 |
+
|
| 270 |
+
# <bos> と <eos> トークンの間に挿入されたトークンのみを取得
|
| 271 |
+
mean_cross_attn_probs = mean_cross_attn_probs[:n_cond_tokens, ...] # (n_tokens, 512, 512)
|
| 272 |
+
cross_attention_probs_list.append(mean_cross_attn_probs)
|
| 273 |
+
|
| 274 |
+
# list -> torch.Tensor
|
| 275 |
+
cross_attention_probs = torch.stack(cross_attention_probs_list) # (16, n_classes, 512, 512)
|
| 276 |
+
n_layers, n_cond_tokens, _, _ = cross_attention_probs.shape
|
| 277 |
+
|
| 278 |
+
progress(0.9, "Post-processing the attention maps...")
|
| 279 |
+
|
| 280 |
+
image_list = []
|
| 281 |
+
# 各行ごとに画像を作成し保存
|
| 282 |
+
for i in tqdm(range(cross_attention_probs.shape[0]), desc="Saving images..."):
|
| 283 |
+
fig, ax = plt.subplots(1, n_cond_tokens, figsize=(16, 4)) # 行ごとに画像を作成
|
| 284 |
+
|
| 285 |
+
for j in range(cross_attention_probs.shape[1]):
|
| 286 |
+
# 各クラスのアテンションマップを Min-Max 正規化 (0~1)
|
| 287 |
+
min_val = cross_attention_probs[i, j].min()
|
| 288 |
+
max_val = cross_attention_probs[i, j].max()
|
| 289 |
+
cross_attention_probs[i, j] = (cross_attention_probs[i, j] - min_val) / (max_val - min_val)
|
| 290 |
+
|
| 291 |
+
attn_probs = cross_attention_probs[i, j].cpu().detach().numpy()
|
| 292 |
+
ax[j].imshow(attn_probs, alpha=0.9)
|
| 293 |
+
ax[j].axis('off')
|
| 294 |
+
ax[j].set_title(tokenizer.decode(input_ids[0, j].item()))
|
| 295 |
+
|
| 296 |
+
# 各行ごとの画像を保存
|
| 297 |
+
out_dir = Path("output")
|
| 298 |
+
out_dir.mkdir(exist_ok=True)
|
| 299 |
+
filepath = out_dir / f"output_row_{i}.png"
|
| 300 |
+
plt.savefig(filepath, bbox_inches='tight', pad_inches=0)
|
| 301 |
+
plt.close(fig)
|
| 302 |
+
|
| 303 |
+
# 保存した画像をPILで読み込んでリストに追加
|
| 304 |
+
image_list.append(Image.open(filepath))
|
| 305 |
+
return image_list
|
| 306 |
|
|
|
|
|
|
|
| 307 |
|
| 308 |
+
if __name__ == '__main__':
|
| 309 |
+
ca_output = [gr.Image(type="pil", label="Attention Map") for _ in range(16)]
|
| 310 |
|
| 311 |
+
iface = gr.Interface(
|
| 312 |
+
title="Stable Diffusion Attention Visualizer",
|
| 313 |
+
description="",
|
| 314 |
+
fn=inference,
|
| 315 |
+
inputs=[
|
| 316 |
+
gr.Image(type="pil", label="Input Image", width=512, height=512),
|
| 317 |
+
gr.Textbox(label="Prompt", placeholder="Enter a prompt here..."),
|
| 318 |
+
],
|
| 319 |
+
outputs=ca_output,
|
| 320 |
+
)
|
| 321 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
diffusers
|
| 5 |
+
accelerate
|
| 6 |
+
safetensors
|
| 7 |
+
transformers
|
| 8 |
+
matplotlib
|
| 9 |
+
rich
|