import os import stat import xml.etree.ElementTree as ET import torch import torch.nn as nn import torch.nn.functional as F import logging import requests from collections import defaultdict from typing import List, Dict, Any from colorama import Fore, Style, init from accelerate import Accelerator from torch.utils.data import DataLoader, TensorDataset from transformers import AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer import numpy as np # Initialize colorama init(autoreset=True) logging.basicConfig(level=logging.INFO, format='\033[92m%(asctime)s - %(levelname)s - %(message)s\033[0m') file_path = 'data/' output_path = 'output/' # Create output path if it doesn't exist if not os.path.exists(output_path): try: os.makedirs(output_path) os.chmod(output_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # Set full r/w permissions except PermissionError: print(f"Permission denied: '{output_path}'") # Handle the error or try a different path # Ensure necessary files are created with full r/w permissions def ensure_file(file_path): if not os.path.exists(file_path): with open(file_path, 'w') as f: pass os.chmod(file_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # Set full r/w permissions class MagicStateLayer(nn.Module): def __init__(self, size): super().__init__() self.state = nn.Parameter(torch.randn(size)) def forward(self, x): return x + self.state class MemoryAugmentationLayer(nn.Module): def __init__(self, size): super().__init__() self.memory = nn.Parameter(torch.randn(size)) def forward(self, x): return x + self.memory class HybridAttentionLayer(nn.Module): def __init__(self, size): super().__init__() self.attention = nn.MultiheadAttention(size, num_heads=8) def forward(self, x): x = x.unsqueeze(1) attn_output, _ = self.attention(x, x, x) return attn_output.squeeze(1) class DynamicFlashAttentionLayer(nn.Module): def __init__(self, size): super().__init__() self.attention = nn.MultiheadAttention(size, num_heads=8) def forward(self, x): x = x.unsqueeze(1) attn_output, _ = self.attention(x, x, x) return attn_output.squeeze(1) class DynamicModel(nn.Module): def __init__(self, sections: Dict[str, List[Dict[str, Any]]]): super().__init__() self.sections = nn.ModuleDict({sn: nn.ModuleList([self.create_layer(lp) for lp in layers]) for sn, layers in sections.items()}) def create_layer(self, lp): layers = [nn.Linear(lp['input_size'], lp['output_size'])] if lp.get('batch_norm', True): layers.append(nn.BatchNorm1d(lp['output_size'])) activation = lp.get('activation', 'relu') if activation == 'relu': layers.append(nn.ReLU(inplace=True)) elif activation == 'tanh': layers.append(nn.Tanh()) elif activation == 'sigmoid': layers.append(nn.Sigmoid()) elif activation == 'leaky_relu': layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True)) elif activation == 'elu': layers.append(nn.ELU(alpha=1.0, inplace=True)) if dropout := lp.get('dropout', 0.1): layers.append(nn.Dropout(p=dropout)) if lp.get('memory_augmentation', True): layers.append(MemoryAugmentationLayer(lp['output_size'])) if lp.get('hybrid_attention', True): layers.append(HybridAttentionLayer(lp['output_size'])) if lp.get('dynamic_flash_attention', True): layers.append(DynamicFlashAttentionLayer(lp['output_size'])) if lp.get('magic_state', True): layers.append(MagicStateLayer(lp['output_size'])) return nn.Sequential(*layers) def forward(self, x, section_name=None): if section_name: for layer in self.sections[section_name]: x = layer(x) else: for section_name, layers in self.sections.items(): for layer in layers: x = layer(x) return x def parse_xml_file(file_path): tree, root, layers = ET.parse(file_path), ET.parse(file_path).getroot(), [] for layer in root.findall('.//label'): lp = { 'input_size': int(layer.get('input_size', 128)), 'output_size': int(layer.get('output_size', 256)), 'activation': layer.get('activation', 'relu').lower() } if lp['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']: raise ValueError(f"Unsupported activation function: {lp['activation']}") if lp['input_size'] <= 0 or lp['output_size'] <= 0: raise ValueError("Layer dimensions must be positive integers") layers.append(lp) if not layers: layers.append({'input_size': 128, 'output_size': 256, 'activation': 'relu'}) return layers def create_model_from_folder(folder_path): sections = defaultdict(list) if not os.path.exists(folder_path): logging.warning(f"Folder {folder_path} does not exist. Creating model with default configuration.") return DynamicModel({}) xml_files_found = False for root, dirs, files in os.walk(folder_path): for file in files: if file.endswith('.xml'): xml_files_found = True file_path = os.path.join(root, file) try: sections[os.path.basename(root).replace('.', '_')].extend(parse_xml_file(file_path)) except Exception as e: logging.error(f"Error processing {file_path}: {str(e)}") if not xml_files_found: logging.warning("No XML files found. Creating model with default configuration.") return DynamicModel({}) return DynamicModel(dict(sections)) def create_embeddings_and_stores(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) doc_store = [] embeddings_list = [] for root, dirs, files in os.walk(folder_path): for file in files: if file.endswith('.xml'): file_path = os.path.join(root, file) try: tree, root = ET.parse(file_path), ET.parse(file_path).getroot() for elem in root.iter(): if elem.text: text = elem.text.strip() inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() embeddings_list.append(embeddings) doc_store.append(text) except Exception as e: logging.error(f"Error processing {file_path}: {str(e)}") return embeddings_list, doc_store def query_embeddings(query, embeddings_list, doc_store, model_name="sentence-transformers/all-MiniLM-L6-v2"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() similarities = [np.dot(query_embedding, emb.T) for emb in embeddings_list] top_k_indices = np.argsort(similarities, axis=0)[-5:][::-1] return [doc_store[i] for i in top_k_indices] def fetch_courtlistener_data(query): base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi" params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"} try: response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10) response.raise_for_status() return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in response.json().get("results", [])] except requests.exceptions.RequestException as e: logging.error(f"Failed to fetch data from NZLII API: {str(e)}") return [] class CustomModel(nn.Module): def __init__(self, model_name="distilbert-base-uncased"): super().__init__() self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.encoder = AutoModel.from_pretrained(model_name) self.hidden_size = self.encoder.config.hidden_size self.dropout = nn.Dropout(p=0.3) self.fc1 = nn.Linear(self.hidden_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 32) self.fc4 = nn.Linear(32, 16) self.memory = nn.LSTM(self.hidden_size, 64, bidirectional=True, batch_first=True) self.memory_fc1 = nn.Linear(64 * 2, 32) self.memory_fc2 = nn.Linear(32, 16) def forward(self, data): tokens = self.tokenizer(data, return_tensors="pt", truncation=True, padding=True) outputs = self.encoder(**tokens) x = outputs.last_hidden_state.mean(dim=1) x = self.dropout(F.relu(self.fc1(x))) x = self.dropout(F.relu(self.fc2(x))) x = self.dropout(F.relu(self.fc3(x))) x = self.fc4(x) return x def training_step(self, data, labels, optimizer, criterion): optimizer.zero_grad() outputs = self.forward(data) loss = criterion(outputs, labels) loss.backward() optimizer.step() return loss.item() def validation_step(self, data, labels, criterion): with torch.no_grad(): outputs = self.forward(data) loss = criterion(outputs, labels) return loss.item() def predict(self, input): self.eval() with torch.no_grad(): return self.forward(input) def main(): folder_path = 'data' model = create_model_from_folder(folder_path) logging.info(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}") embeddings_list, doc_store = create_embeddings_and_stores(folder_path) accelerator = Accelerator() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() num_epochs = 10 dataset = TensorDataset(torch.randn(100, 128), torch.randint(0, 2, (100,))) dataloader = DataLoader(dataset, batch_size=16, shuffle=True) model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) for epoch in range(num_epochs): model.train() total_loss = 0 for batch_data, batch_labels in dataloader: optimizer.zero_grad() outputs = model(batch_data) loss = criterion(outputs, batch_labels) accelerator.backward(loss) optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(dataloader) logging.info(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}") query = "example query text" results = query_embeddings(query, embeddings_list, doc_store) logging.info(f"Query results: {results}") courtlistener_data = fetch_courtlistener_data(query) logging.info(f"CourtListener API results: {courtlistener_data}") if __name__ == "__main__": main()