QLWD commited on
Commit
21019ce
1 Parent(s): 9bbdc76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -147
app.py CHANGED
@@ -3,180 +3,162 @@ import spaces
3
  import gradio as gr
4
  import os
5
  from pyannote.audio import Pipeline
6
- from pyannote.core import Annotation, Segment
7
  from pydub import AudioSegment
8
 
9
  # 获取 Hugging Face 认证令牌
10
  HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
 
11
 
12
- class AudioProcessor:
13
- def __init__(self):
14
- self.pipeline = None
15
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
-
17
- # 尝试加载 pyannote 模型
18
- try:
19
- self.pipeline = Pipeline.from_pretrained(
20
- "pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
21
- )
22
- self.pipeline.to(self.device)
23
- print("pyannote model loaded successfully.")
24
- except Exception as e:
25
- print(f"Error initializing pipeline: {e}")
26
- self.pipeline = None
27
-
28
- # 音频拼接函数:拼接目标音频和混合音频,返回目标音频的起始时间和结束时间作为字典
29
- def combine_audio_with_time(self, target_audio, mixed_audio):
30
- if self.pipeline is None:
31
- return "错误: 模型未初始化"
32
-
33
- # 加载目标说话人的样本音频
34
- try:
35
- target_audio_segment = AudioSegment.from_wav(target_audio)
36
- except Exception as e:
37
- return f"加载目标音频时出错: {e}"
38
-
39
- # 加载混合音频
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  try:
41
- mixed_audio_segment = AudioSegment.from_wav(mixed_audio)
42
- except Exception as e:
43
- return f"加载混合音频时出错: {e}"
44
-
45
- # 记录目标说话人音频的时间点(精确到0.01秒)
46
- target_start_time = len(mixed_audio_segment) / 1000 # 秒为单位,精确到 0.01 秒
47
-
48
- # 目标音频的结束时间(拼接后的音频长度)
49
- target_end_time = target_start_time + len(target_audio_segment) / 1000 # 秒为单位
50
 
51
- # 将目标说话人的音频片段添加到混合音频的最后
52
- final_audio = mixed_audio_segment + target_audio_segment
53
- final_audio.export("final_output.wav", format="wav")
54
 
55
- # 返回目标音频的起始时间和结束时间
56
- return {"start_time": target_start_time, "end_time": target_end_time}
 
57
 
58
- # 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
59
- @spaces.GPU(duration=60 * 2) # 使用 GPU 加速,限制执行时间为 120 秒
60
- def diarize_audio(self, temp_file):
61
- if self.pipeline is None:
62
- return "错误: 模型未初始化"
63
 
64
- try:
65
- diarization = self.pipeline(temp_file) # 返回 Annotation 对象
66
  except Exception as e:
67
- return f"处理音频时出错: {e}"
68
- print(diarization)
69
- print(str(diarization))
70
- return diarization # 直接返回 Annotation 对象
71
-
72
- # 将时间戳转换为秒
73
- def timestamp_to_seconds(self, timestamp):
74
- try:
75
- h, m, s = map(float, timestamp.split(':'))
76
- return 3600 * h + 60 * m + s
77
- except ValueError as e:
78
- print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
79
- return None
80
-
81
- # 计算时间段的重叠部分(单位:秒)
82
- def calculate_overlap(self, start1, end1, start2, end2):
83
- overlap_start = max(start1, start2)
84
- overlap_end = min(end1, end2)
85
- overlap_duration = max(0, overlap_end - overlap_start)
86
- return overlap_duration
87
-
88
- # 获取目标时间段和说话人时间段的重叠比例
89
- def get_best_match(self, target_time, diarization_output):
90
- target_start_time = target_time['start_time']
91
- target_end_time = target_time['end_time']
92
-
93
- # 用于存储每个说话人时间段的重叠比例
94
- speaker_segments = []
95
- for segment, label in diarization_output.itertracks(yield_label=True):
96
- try:
97
- start_seconds = segment.start
98
- end_seconds = segment.end
99
-
100
- # 计算目标音频时间段和说话人时间段的重叠时间
101
- overlap = self.calculate_overlap(target_start_time, target_end_time, start_seconds, end_seconds)
102
- overlap_ratio = overlap / (end_seconds - start_seconds)
103
-
104
- # 记录说话人标签和重叠比例
105
- speaker_segments.append((label, overlap_ratio, start_seconds, end_seconds))
106
-
107
- except Exception as e:
108
- print(f"处理行时出错: '{segment}'. 错误: {e}")
109
-
110
- # 按照重叠比例排序,返回重叠比例最大的一段
111
- best_match = max(speaker_segments, key=lambda x: x[1], default=None)
112
- return best_match
113
-
114
- # 获取该说话人除了目标语音时间段外的所有时间段
115
- def get_speaker_time_segments(self, diarization_output, target_time, speaker_label):
116
- remaining_segments = []
117
-
118
- # 遍历 diarization 输出,查找该说话人的所有时间段
119
- for segment, label in diarization_output.itertracks(yield_label=True):
120
- if label == speaker_label:
121
- start_seconds = segment.start
122
- end_seconds = segment.end
123
-
124
- # 计算与目标音频的重叠部分
125
- overlap_start = max(start_seconds, target_time['start_time'])
126
- overlap_end = min(end_seconds, target_time['end_time'])
127
-
128
- # 如果有重叠部分,排除重叠部分
129
- if overlap_start < overlap_end:
130
- if start_seconds < overlap_start:
131
- remaining_segments.append((start_seconds, overlap_start))
132
- if overlap_end < end_seconds:
133
- remaining_segments.append((overlap_end, end_seconds))
134
- else:
135
- remaining_segments.append((start_seconds, end_seconds))
136
-
137
- return remaining_segments
138
-
139
- # 处理音频文件并返回输出
140
- def process_audio(self, target_audio, mixed_audio):
141
- # 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
142
- time_dict = self.combine_audio_with_time(target_audio, mixed_audio)
143
-
144
- # 执行���话人分离
145
- diarization_result = self.diarize_audio("final_output.wav")
146
-
147
- if isinstance(diarization_result, str) and diarization_result.startswith("错误"):
148
- return diarization_result, None # 出错时返回错误信息
149
- else:
150
- # 获取最佳匹配的说话人标签和时间段
151
- best_match = self.get_best_match(time_dict, diarization_result)
152
-
153
- if best_match:
154
- speaker_label = best_match[0] # 取出最佳匹配说话人的标签
155
- # 获取该说话人除了目标语音时间段外的所有时间段
156
- remaining_segments = self.get_speaker_time_segments(diarization_result, time_dict, speaker_label)
157
- return speaker_label, remaining_segments
158
 
159
  # Gradio 接口
160
  with gr.Blocks() as demo:
161
  gr.Markdown("""
162
  # 🗣️ 音频拼接与说话人分类 🗣️
163
- 上传目标音频和混合音频,拼接并进行说话人分类。结果包括最佳匹配说话人的时间段(排除目标音频时间段)。
164
  """)
165
-
166
  mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
167
  target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
168
-
169
  process_button = gr.Button("处理音频")
170
-
171
  # 输出结果
172
  diarization_output = gr.Textbox(label="最佳匹配说话人")
173
  time_range_output = gr.Textbox(label="最佳匹配时间段")
174
 
175
  # 点击按钮时触发处理音频
176
  process_button.click(
177
- fn=AudioProcessor().process_audio,
178
  inputs=[target_audio_input, mixed_audio_input],
179
  outputs=[diarization_output, time_range_output]
180
  )
181
 
182
- demo.launch(share=True)
 
3
  import gradio as gr
4
  import os
5
  from pyannote.audio import Pipeline
 
6
  from pydub import AudioSegment
7
 
8
  # 获取 Hugging Face 认证令牌
9
  HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
10
+ pipeline = None
11
 
12
+ # 尝试加载 pyannote 模型
13
+ try:
14
+ pipeline = Pipeline.from_pretrained(
15
+ "pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
16
+ )
17
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+ pipeline.to(device)
19
+ except Exception as e:
20
+ print(f"Error initializing pipeline: {e}")
21
+ pipeline = None
22
+
23
+ # 音频拼接函数:拼接目标音频和混合音频,返回目标音频的起始时间和结束时间作为字典
24
+ def combine_audio_with_time(target_audio, mixed_audio):
25
+ if pipeline is None:
26
+ return "错误: 模型未初始化"
27
+
28
+ # 打印文件路径,确保文件正确传递
29
+ print(f"目标音频文件路径: {target_audio}")
30
+ print(f"混合音频文件路径: {mixed_audio}")
31
+
32
+ # 加载目标说话人的样本音频
33
+ try:
34
+ target_audio_segment = AudioSegment.from_wav(target_audio)
35
+ except Exception as e:
36
+ return f"加载目标音频时出错: {e}"
37
+
38
+ # 加载混合音频
39
+ try:
40
+ mixed_audio_segment = AudioSegment.from_wav(mixed_audio)
41
+ except Exception as e:
42
+ return f"加载混合音频时出错: {e}"
43
+
44
+ # 记录目标说话人音频的时间点(精确到0.01秒)
45
+ target_start_time = len(mixed_audio_segment) / 1000 # 秒为单位,精确到 0.01 秒
46
+
47
+ # 目标音频的结束时间(拼接后的音频长度)
48
+ target_end_time = target_start_time + len(target_audio_segment) / 1000 # 秒为单位
49
+
50
+ # 将目标说话人的音频片段添加到混合音频的最后
51
+ final_audio = mixed_audio_segment + target_audio_segment
52
+ final_audio.export("final_output.wav", format="wav")
53
+
54
+ # 返回目标音频的起始时间和结束时间
55
+ return {"start_time": target_start_time, "end_time": target_end_time}
56
+
57
+ # 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
58
+ @spaces.GPU(duration=60 * 2) # 使用 GPU 加速,限制执行时间为 120 秒
59
+ def diarize_audio(temp_file):
60
+ if pipeline is None:
61
+ return "错误: 模型未初始化"
62
+
63
+ try:
64
+ diarization = pipeline(temp_file)
65
+ except Exception as e:
66
+ return f"处理音频时出错: {e}"
67
+ print(diarization)
68
+ print(type(diarization))
69
+ # 返回 diarization 输出
70
+ return str(diarization)
71
+
72
+ # 将时间戳转换为秒
73
+ def timestamp_to_seconds(timestamp):
74
+ try:
75
+ h, m, s = map(float, timestamp.split(':'))
76
+ return 3600 * h + 60 * m + s
77
+ except ValueError as e:
78
+ print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
79
+ return None
80
+
81
+ # 计算时间段的重叠部分(单位:秒)
82
+ def calculate_overlap(start1, end1, start2, end2):
83
+ overlap_start = max(start1, start2)
84
+ overlap_end = min(end1, end2)
85
+ overlap_duration = max(0, overlap_end - overlap_start)
86
+ return overlap_duration
87
+
88
+ # 获取目标时间段和说话人时间段的重叠比例
89
+ def get_best_match(target_time, diarization_output):
90
+ target_start_time = target_time['start_time']
91
+ target_end_time = target_time['end_time']
92
+
93
+ # 假设 diarization_output 是一个列表,包含说话人时间段和标签
94
+ speaker_segments = []
95
+ for line in diarization_output.strip().split('\n'):
96
  try:
97
+ parts = line.strip()[1:-1].split(' --> ')
98
+ start_time = parts[0].strip()
99
+ end_time = parts[1].split(']')[0].strip()
100
+ label = line.split()[-1].strip()
 
 
 
 
 
101
 
102
+ start_seconds = timestamp_to_seconds(start_time)
103
+ end_seconds = timestamp_to_seconds(end_time)
 
104
 
105
+ # 计算目标音频时间段和说话人时间段的重叠时间
106
+ overlap = calculate_overlap(target_start_time, target_end_time, start_seconds, end_seconds)
107
+ overlap_ratio = overlap / (end_seconds - start_seconds)
108
 
109
+ # 记录说话人标签和重叠比例
110
+ speaker_segments.append((label, overlap_ratio, start_seconds, end_seconds))
 
 
 
111
 
 
 
112
  except Exception as e:
113
+ print(f"处理行时出错: '{line.strip()}'. 错误: {e}")
114
+
115
+ # 按照重叠比例排序,返回重叠比例最大的一段
116
+ best_match = max(speaker_segments, key=lambda x: x[1], default=None)
117
+
118
+ return best_match
119
+
120
+ # 处理音频文件并返回输出
121
+ def process_audio(target_audio, mixed_audio):
122
+ # 打印文件路径,确保传入的文件有效
123
+ print(f"处理音频:目标音频: {target_audio}, 混合音频: {mixed_audio}")
124
+
125
+ # 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
126
+ time_dict = combine_audio_with_time(target_audio, mixed_audio)
127
+
128
+ # 执行说话人分离
129
+ diarization_result = diarize_audio("final_output.wav")
130
+
131
+ if diarization_result.startswith("错误"):
132
+ return diarization_result, None # 出错时返回错误信息
133
+ else:
134
+ # 获取最佳匹配的说话人标签和时间段
135
+ best_match = get_best_match(time_dict, diarization_result)
136
+
137
+ if best_match:
138
+ # 返回最佳匹配说话人的标签和时间段
139
+ return best_match[0], best_match[2], best_match[3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  # Gradio 接口
142
  with gr.Blocks() as demo:
143
  gr.Markdown("""
144
  # 🗣️ 音频拼接与说话人分类 🗣️
145
+ 上传目标音频和混合音频,拼接并进行说话人分类。结果包括最佳匹配说话人的时间段。
146
  """)
147
+
148
  mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
149
  target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
150
+
151
  process_button = gr.Button("处理音频")
152
+
153
  # 输出结果
154
  diarization_output = gr.Textbox(label="最佳匹配说话人")
155
  time_range_output = gr.Textbox(label="最佳匹配时间段")
156
 
157
  # 点击按钮时触发处理音频
158
  process_button.click(
159
+ fn=process_audio,
160
  inputs=[target_audio_input, mixed_audio_input],
161
  outputs=[diarization_output, time_range_output]
162
  )
163
 
164
+ demo.launch(share=True)