Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import torch
|
2 |
-
import spaces
|
3 |
-
import gradio as gr
|
4 |
import os
|
5 |
from pyannote.audio import Pipeline
|
6 |
from pydub import AudioSegment
|
|
|
7 |
|
8 |
# 获取 Hugging Face 认证令牌
|
9 |
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
|
@@ -60,7 +59,6 @@ def combine_audio_with_time(target_audio, mixed_audio):
|
|
60 |
return {"start_time": target_start_time, "end_time": target_end_time}
|
61 |
|
62 |
# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
|
63 |
-
@spaces.GPU(duration=60 * 2) # 使用 GPU 加速,限制执行时间为 120 秒
|
64 |
def diarize_audio(temp_file):
|
65 |
if pipeline is None:
|
66 |
return "错误: 模型未初始化"
|
@@ -74,37 +72,34 @@ def diarize_audio(temp_file):
|
|
74 |
except Exception as e:
|
75 |
return f"处理音频时出错: {e}"
|
76 |
|
77 |
-
#
|
78 |
-
def
|
79 |
-
|
|
|
80 |
|
81 |
-
#
|
82 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
83 |
start = turn.start
|
84 |
end = turn.end
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
else:
|
99 |
-
# 完全不与目标音频重叠的时间段
|
100 |
-
if end <= target_start_time or start >= target_end_time:
|
101 |
-
speaker_segments.setdefault(speaker, []).append((start, end))
|
102 |
|
103 |
-
return
|
104 |
|
105 |
-
#
|
106 |
-
def process_audio(target_audio, mixed_audio
|
107 |
-
print(f"处理音频:目标音频: {target_audio}, 混合音频: {mixed_audio}
|
108 |
|
109 |
# 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
|
110 |
time_dict = combine_audio_with_time(target_audio, mixed_audio)
|
@@ -122,45 +117,41 @@ def process_audio(target_audio, mixed_audio, speaker_name):
|
|
122 |
# 获取拼接后的音频长度
|
123 |
final_audio_length = len(AudioSegment.from_wav("final_output.wav")) / 1000 # 秒为单位
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
diarization_result,
|
128 |
-
speaker_name,
|
129 |
time_dict['start_time'],
|
130 |
time_dict['end_time'],
|
131 |
-
|
132 |
)
|
133 |
|
134 |
-
if
|
135 |
-
# 返回目标说话人的时间段(已排除和截断目标音频时间段)
|
136 |
return {
|
137 |
-
'
|
138 |
-
'
|
139 |
}
|
140 |
else:
|
141 |
-
return
|
142 |
|
143 |
# Gradio 接口
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("""
|
146 |
# 🗣️ 音频拼接与说话人分类 🗣️
|
147 |
上传目标音频和混合音频,拼接并进行说话人分类。
|
148 |
-
|
149 |
""")
|
150 |
|
151 |
mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
|
152 |
target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
|
153 |
-
speaker_name_input = gr.Textbox(label="请输入说话人名称(如 'SPEAKER_01')", value="SPEAKER_00")
|
154 |
|
155 |
process_button = gr.Button("处理音频")
|
156 |
|
157 |
# 输出结果
|
158 |
-
diarization_output = gr.Textbox(label="
|
159 |
|
160 |
# 点击按钮时触发处理音频
|
161 |
process_button.click(
|
162 |
fn=process_audio,
|
163 |
-
inputs=[target_audio_input, mixed_audio_input
|
164 |
outputs=[diarization_output]
|
165 |
)
|
166 |
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import os
|
3 |
from pyannote.audio import Pipeline
|
4 |
from pydub import AudioSegment
|
5 |
+
import gradio as gr
|
6 |
|
7 |
# 获取 Hugging Face 认证令牌
|
8 |
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
|
|
|
59 |
return {"start_time": target_start_time, "end_time": target_end_time}
|
60 |
|
61 |
# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
|
|
|
62 |
def diarize_audio(temp_file):
|
63 |
if pipeline is None:
|
64 |
return "错误: 模型未初始化"
|
|
|
72 |
except Exception as e:
|
73 |
return f"处理音频时出错: {e}"
|
74 |
|
75 |
+
# 查找最匹配的说话人
|
76 |
+
def find_best_matching_speaker(target_start_time, target_end_time, diarization):
|
77 |
+
best_match = None
|
78 |
+
max_overlap = 0
|
79 |
|
80 |
+
# 遍历所有说话人时间段,计算与目标音频的重叠部分
|
81 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
82 |
start = turn.start
|
83 |
end = turn.end
|
84 |
|
85 |
+
# 计算重叠部分的开始和结束时间
|
86 |
+
overlap_start = max(start, target_start_time)
|
87 |
+
overlap_end = min(end, target_end_time)
|
88 |
+
|
89 |
+
# 如果有重叠部分,计算重叠的持续时间
|
90 |
+
if overlap_end > overlap_start:
|
91 |
+
overlap_duration = overlap_end - overlap_start
|
92 |
+
|
93 |
+
# 如果当前重叠部分更大,则更新最匹配的说话人
|
94 |
+
if overlap_duration > max_overlap:
|
95 |
+
max_overlap = overlap_duration
|
96 |
+
best_match = speaker
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
return best_match, max_overlap
|
99 |
|
100 |
+
# 获取最匹配的说话人并返回其时间段
|
101 |
+
def process_audio(target_audio, mixed_audio):
|
102 |
+
print(f"处理音频:目标音频: {target_audio}, 混合音频: {mixed_audio}")
|
103 |
|
104 |
# 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
|
105 |
time_dict = combine_audio_with_time(target_audio, mixed_audio)
|
|
|
117 |
# 获取拼接后的音频长度
|
118 |
final_audio_length = len(AudioSegment.from_wav("final_output.wav")) / 1000 # 秒为单位
|
119 |
|
120 |
+
# 查找最匹配的说话人
|
121 |
+
best_match, overlap_duration = find_best_matching_speaker(
|
|
|
|
|
122 |
time_dict['start_time'],
|
123 |
time_dict['end_time'],
|
124 |
+
diarization_result
|
125 |
)
|
126 |
|
127 |
+
if best_match:
|
|
|
128 |
return {
|
129 |
+
'best_matching_speaker': best_match,
|
130 |
+
'overlap_duration': overlap_duration
|
131 |
}
|
132 |
else:
|
133 |
+
return "未找到匹配的说话人。"
|
134 |
|
135 |
# Gradio 接口
|
136 |
with gr.Blocks() as demo:
|
137 |
+
gr.Markdown("""
|
138 |
# 🗣️ 音频拼接与说话人分类 🗣️
|
139 |
上传目标音频和混合音频,拼接并进行说话人分类。
|
140 |
+
结果包括最匹配的说话人以及重叠时长。
|
141 |
""")
|
142 |
|
143 |
mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
|
144 |
target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
|
|
|
145 |
|
146 |
process_button = gr.Button("处理音频")
|
147 |
|
148 |
# 输出结果
|
149 |
+
diarization_output = gr.Textbox(label="最匹配的说话人及重叠时长")
|
150 |
|
151 |
# 点击按钮时触发处理音频
|
152 |
process_button.click(
|
153 |
fn=process_audio,
|
154 |
+
inputs=[target_audio_input, mixed_audio_input],
|
155 |
outputs=[diarization_output]
|
156 |
)
|
157 |
|