Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,27 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from pydub import AudioSegment
|
|
|
|
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def combine_audio_with_time(target_audio, mixed_audio):
|
|
|
|
|
|
|
6 |
# 加载目标说话人的样本音频
|
7 |
target_audio_segment = AudioSegment.from_wav(target_audio.name)
|
8 |
|
@@ -20,18 +39,94 @@ def combine_audio_with_time(target_audio, mixed_audio):
|
|
20 |
|
21 |
return "final_output.wav", target_start_time
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Gradio 接口
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
from pydub import AudioSegment
|
4 |
+
from pyannote.audio.pipelines import SpeakerDiarization
|
5 |
+
import torch
|
6 |
|
7 |
+
# 初始化 pyannote/speaker-diarization 模型
|
8 |
+
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
|
9 |
+
pipeline = None
|
10 |
+
try:
|
11 |
+
pipeline = SpeakerDiarization.from_pretrained(
|
12 |
+
"pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
|
13 |
+
)
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
pipeline.to(device)
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error initializing pipeline: {e}")
|
18 |
+
pipeline = None
|
19 |
+
|
20 |
+
# 音频处理函数:拼接目标音频和混合音频
|
21 |
def combine_audio_with_time(target_audio, mixed_audio):
|
22 |
+
if pipeline is None:
|
23 |
+
return "错误: 模型未初始化"
|
24 |
+
|
25 |
# 加载目标说话人的样本音频
|
26 |
target_audio_segment = AudioSegment.from_wav(target_audio.name)
|
27 |
|
|
|
39 |
|
40 |
return "final_output.wav", target_start_time
|
41 |
|
42 |
+
# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
|
43 |
+
def diarize_audio(temp_file):
|
44 |
+
if pipeline is None:
|
45 |
+
return "错误: 模型未初始化"
|
46 |
+
|
47 |
+
try:
|
48 |
+
diarization = pipeline(temp_file)
|
49 |
+
except Exception as e:
|
50 |
+
return f"处理音频时出错: {e}"
|
51 |
+
|
52 |
+
# 返回 diarization 输出
|
53 |
+
return str(diarization)
|
54 |
+
|
55 |
+
# 处理并生成标签文件
|
56 |
+
def generate_labels_from_diarization(diarization_output):
|
57 |
+
labels_path = 'labels.txt'
|
58 |
+
successful_lines = 0
|
59 |
+
|
60 |
+
try:
|
61 |
+
with open(labels_path, 'w') as outfile:
|
62 |
+
lines = diarization_output.strip().split('\n')
|
63 |
+
for line in lines:
|
64 |
+
try:
|
65 |
+
parts = line.strip()[1:-1].split(' --> ')
|
66 |
+
start_time = parts[0].strip()
|
67 |
+
end_time = parts[1].split(']')[0].strip()
|
68 |
+
label = line.split()[-1].strip()
|
69 |
+
start_seconds = timestamp_to_seconds(start_time)
|
70 |
+
end_seconds = timestamp_to_seconds(end_time)
|
71 |
+
outfile.write(f"{start_seconds}\t{end_seconds}\t{label}\n")
|
72 |
+
successful_lines += 1
|
73 |
+
except Exception as e:
|
74 |
+
print(f"处理行时出错: '{line.strip()}'. 错误: {e}")
|
75 |
+
print(f"成功处理了 {successful_lines} 行。")
|
76 |
+
return labels_path if successful_lines > 0 else None
|
77 |
+
except Exception as e:
|
78 |
+
print(f"写入文件时出错: {e}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 将时间戳转换为秒
|
82 |
+
def timestamp_to_seconds(timestamp):
|
83 |
+
try:
|
84 |
+
h, m, s = map(float, timestamp.split(':'))
|
85 |
+
return 3600 * h + 60 * m + s
|
86 |
+
except ValueError as e:
|
87 |
+
print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
@spaces.GPU(duration=60 * 2)
|
91 |
+
# 处理音频文件
|
92 |
+
def process_audio(audio):
|
93 |
+
diarization_result = diarize_audio(save_audio(audio))
|
94 |
+
if diarization_result.startswith("错误"):
|
95 |
+
return diarization_result, None # 如果出错,返回错误信息和空的标签文件
|
96 |
+
else:
|
97 |
+
label_file = generate_labels_from_diarization(diarization_result)
|
98 |
+
return diarization_result, label_file
|
99 |
+
|
100 |
+
# 保存上传的音频
|
101 |
+
def save_audio(audio):
|
102 |
+
with open(audio.name, "rb") as f:
|
103 |
+
audio_data = f.read()
|
104 |
+
|
105 |
+
# 保存上传的音频文件到临时位置
|
106 |
+
with open("temp.wav", "wb") as f:
|
107 |
+
f.write(audio_data)
|
108 |
+
|
109 |
+
return "temp.wav"
|
110 |
+
|
111 |
# Gradio 接口
|
112 |
+
with gr.Blocks() as demo:
|
113 |
+
gr.Markdown("""
|
114 |
+
# 🗣️ 音频拼接与说话人分类 🗣️
|
115 |
+
上传目标说话人音频和混合音频,拼接并进行说话人分类。
|
116 |
+
""")
|
117 |
+
|
118 |
+
audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
|
119 |
+
mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
|
120 |
+
|
121 |
+
process_button = gr.Button("处理音频")
|
122 |
+
diarization_output = gr.Textbox(label="说话人分离结果")
|
123 |
+
label_file_link = gr.File(label="下载标签文件")
|
124 |
+
|
125 |
+
# 处理音频
|
126 |
+
process_button.click(
|
127 |
+
fn=process_audio,
|
128 |
+
inputs=[audio_input],
|
129 |
+
outputs=[diarization_output, label_file_link]
|
130 |
+
)
|
131 |
+
|
132 |
+
demo.launch(share=False)
|