Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,14 @@ import torch
|
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
import os
|
|
|
5 |
from pydub import AudioSegment
|
6 |
-
from pyannote.audio.pipelines import SpeakerDiarization
|
7 |
-
|
8 |
|
9 |
# 初始化 pyannote/speaker-diarization 模型
|
10 |
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
|
11 |
pipeline = None
|
12 |
try:
|
13 |
-
pipeline =
|
14 |
"pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
|
15 |
)
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -19,16 +18,16 @@ except Exception as e:
|
|
19 |
print(f"Error initializing pipeline: {e}")
|
20 |
pipeline = None
|
21 |
|
22 |
-
#
|
23 |
def combine_audio_with_time(target_audio, mixed_audio):
|
24 |
if pipeline is None:
|
25 |
return "错误: 模型未初始化"
|
26 |
|
27 |
# 加载目标说话人的样本音频
|
28 |
-
target_audio_segment = AudioSegment.from_wav(target_audio
|
29 |
|
30 |
# 加载混合音频
|
31 |
-
mixed_audio_segment = AudioSegment.from_wav(mixed_audio
|
32 |
|
33 |
# 记录目标说话人音频的时间点(精确到0.01秒)
|
34 |
target_start_time = len(mixed_audio_segment) / 1000 # 秒为单位,精确到 0.01 秒
|
@@ -42,7 +41,7 @@ def combine_audio_with_time(target_audio, mixed_audio):
|
|
42 |
return "final_output.wav", target_start_time
|
43 |
|
44 |
# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
|
45 |
-
@spaces.GPU(duration=60 * 2)
|
46 |
def diarize_audio(temp_file):
|
47 |
if pipeline is None:
|
48 |
return "错误: 模型未初始化"
|
@@ -55,7 +54,7 @@ def diarize_audio(temp_file):
|
|
55 |
# 返回 diarization 输出
|
56 |
return str(diarization)
|
57 |
|
58 |
-
#
|
59 |
def generate_labels_from_diarization(diarization_output):
|
60 |
labels_path = 'labels.txt'
|
61 |
successful_lines = 0
|
@@ -89,47 +88,46 @@ def timestamp_to_seconds(timestamp):
|
|
89 |
except ValueError as e:
|
90 |
print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
|
91 |
return None
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
if diarization_result.startswith("错误"):
|
98 |
-
return diarization_result, None #
|
99 |
else:
|
|
|
100 |
label_file = generate_labels_from_diarization(diarization_result)
|
101 |
-
return diarization_result, label_file
|
102 |
-
|
103 |
-
# 保存上传的音频
|
104 |
-
def save_audio(audio):
|
105 |
-
with open(audio.name, "rb") as f:
|
106 |
-
audio_data = f.read()
|
107 |
-
|
108 |
-
# 保存上传的音频文件到临时位置
|
109 |
-
with open("temp.wav", "wb") as f:
|
110 |
-
f.write(audio_data)
|
111 |
-
|
112 |
-
return "temp.wav"
|
113 |
|
114 |
# Gradio 接口
|
115 |
with gr.Blocks() as demo:
|
116 |
gr.Markdown("""
|
117 |
# 🗣️ 音频拼接与说话人分类 🗣️
|
118 |
-
|
119 |
""")
|
120 |
|
121 |
-
|
122 |
mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
|
123 |
-
|
124 |
process_button = gr.Button("处理音频")
|
|
|
|
|
125 |
diarization_output = gr.Textbox(label="说话人分离结果")
|
126 |
label_file_link = gr.File(label="下载标签文件")
|
|
|
|
|
|
|
127 |
|
128 |
-
#
|
129 |
process_button.click(
|
130 |
fn=process_audio,
|
131 |
-
inputs=[
|
132 |
-
outputs=[diarization_output, label_file_link]
|
133 |
)
|
134 |
|
135 |
demo.launch(share=False)
|
|
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
+
from pyannote.audio import Pipeline
|
6 |
from pydub import AudioSegment
|
|
|
|
|
7 |
|
8 |
# 初始化 pyannote/speaker-diarization 模型
|
9 |
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
|
10 |
pipeline = None
|
11 |
try:
|
12 |
+
pipeline = Pipeline.from_pretrained(
|
13 |
"pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
|
14 |
)
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
18 |
print(f"Error initializing pipeline: {e}")
|
19 |
pipeline = None
|
20 |
|
21 |
+
# 音频拼接函数:拼接目标音频和混合音频
|
22 |
def combine_audio_with_time(target_audio, mixed_audio):
|
23 |
if pipeline is None:
|
24 |
return "错误: 模型未初始化"
|
25 |
|
26 |
# 加载目标说话人的样本音频
|
27 |
+
target_audio_segment = AudioSegment.from_wav(target_audio)
|
28 |
|
29 |
# 加载混合音频
|
30 |
+
mixed_audio_segment = AudioSegment.from_wav(mixed_audio)
|
31 |
|
32 |
# 记录目标说话人音频的时间点(精确到0.01秒)
|
33 |
target_start_time = len(mixed_audio_segment) / 1000 # 秒为单位,精确到 0.01 秒
|
|
|
41 |
return "final_output.wav", target_start_time
|
42 |
|
43 |
# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
|
44 |
+
@spaces.GPU(duration=60 * 2) # 使用 GPU 加速,限制执行时间为 120 秒
|
45 |
def diarize_audio(temp_file):
|
46 |
if pipeline is None:
|
47 |
return "错误: 模型未初始化"
|
|
|
54 |
# 返回 diarization 输出
|
55 |
return str(diarization)
|
56 |
|
57 |
+
# 生成标签文件的函数
|
58 |
def generate_labels_from_diarization(diarization_output):
|
59 |
labels_path = 'labels.txt'
|
60 |
successful_lines = 0
|
|
|
88 |
except ValueError as e:
|
89 |
print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
|
90 |
return None
|
91 |
+
|
92 |
+
# 处理音频文件并返回输出
|
93 |
+
def process_audio(target_audio, mixed_audio):
|
94 |
+
# 进行音频拼接
|
95 |
+
final_audio_path, target_start_time = combine_audio_with_time(target_audio, mixed_audio)
|
96 |
+
|
97 |
+
# 执行说话人分离
|
98 |
+
diarization_result = diarize_audio(final_audio_path)
|
99 |
+
|
100 |
if diarization_result.startswith("错误"):
|
101 |
+
return diarization_result, None, None # 出错时返回错误信息
|
102 |
else:
|
103 |
+
# 生成标签文件
|
104 |
label_file = generate_labels_from_diarization(diarization_result)
|
105 |
+
return diarization_result, label_file, final_audio_path # 返回说话人分离结果、标签文件和剪辑后的音频路径
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
# Gradio 接口
|
108 |
with gr.Blocks() as demo:
|
109 |
gr.Markdown("""
|
110 |
# 🗣️ 音频拼接与说话人分类 🗣️
|
111 |
+
上传目标说话人音频和混合音频,拼接并进行说话人分类。结果包括说话人分离输出、标签文件和剪辑后的音频文件。
|
112 |
""")
|
113 |
|
114 |
+
target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
|
115 |
mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
|
116 |
+
|
117 |
process_button = gr.Button("处理音频")
|
118 |
+
|
119 |
+
# 输出结果
|
120 |
diarization_output = gr.Textbox(label="说话人分离结果")
|
121 |
label_file_link = gr.File(label="下载标签文件")
|
122 |
+
|
123 |
+
# 修改为 gr.Audio 组件来返回音频
|
124 |
+
final_audio_link = gr.Audio(label="下载剪辑后的音频", type="file")
|
125 |
|
126 |
+
# 点击按钮时触发处理音频
|
127 |
process_button.click(
|
128 |
fn=process_audio,
|
129 |
+
inputs=[target_audio_input, mixed_audio_input],
|
130 |
+
outputs=[diarization_output, label_file_link, final_audio_link]
|
131 |
)
|
132 |
|
133 |
demo.launch(share=False)
|