import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import PeftModel
import gradio as gr
from threading import Thread
import spaces
import os
# 从环境变量中获取 Hugging Face 模型信息
HF_TOKEN = os.environ.get("HF_TOKEN", None)
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 替换为基础模型
LORA_MODEL_PATH = "QLWD/test-7b" # 替换为 LoRA 模型仓库路径
# 定义界面标题和描述
TITLE = "
漏洞检测 微调模型测试
"
DESCRIPTION = f"""
测试基础模型 + LoRA 补丁的生成效果。
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# 加载基础模型和 LoRA 微调权重
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_auth_token=HF_TOKEN)
# 加载 LoRA 微调权重
model = PeftModel.from_pretrained(base_model, LORA_MODEL_PATH, use_auth_token=HF_TOKEN)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
# 定义推理函数
@spaces.GPU(duration=50)
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
conversation = []
# 添加系统提示,定义模型的角色
conversation.append({"role": "system", "content": '''你是一位代码审计和漏洞修复助手,请仔细分析下面提供的代码,扫描并输出所有存在的漏洞和潜在的风险。每个漏洞或风险之间用分隔符 "--------" 隔开,报告内容左对齐。
从高危到低危的顺序来列出漏洞和风险,每个漏洞或风险的格式如下:
- **类型**:明确描述漏洞的类型(如SQL注入、命令注入、反序列化漏洞等),或潜在的风险类型(如资源泄露、边界条件问题等)。
- **风险等级**:根据漏洞或风险的严重性进行评级(如高危、中危、低危)。
- **漏洞/风险描述**:详细解释漏洞的技术细节和成因,或描述潜在的风险。
- **影响**:说明该漏洞或风险可能对系统、数据或用户造成的具体影响。
- **修复建议**:提供修复该漏洞或风险的具体步骤或建议(不是给出修复代码,而是修复的实现方法)。
- **漏洞所在的代码段**:给出代码中存在漏洞的具体位置和代码段(如适用)。
- **修复的代码段**:给出修复漏洞的替换代码段,以便开发者使用(如适用)。
请确保扫描并**输出所有**漏洞和风险,请确保扫描并**输出所有**漏洞和风险,包括但不限于:命令注入、SQL注入、文件操作不安全、资源泄露、异常处理缺失等。
分隔符 "--------" 用于每个漏洞或风险之间。
'''})
# 将历史对话内容添加到会话中
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "漏洞zhushou", "content": answer}])
# 添加当前用户的输入到对话中
conversation.append({"role": "user", "content": message})
# 使用自定义对话模板生成 input_ids
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# 设置生成参数
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=[151645, 151643],
)
# 启动生成线程
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
# 定义 Gradio 界面
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", render=False),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="top_p", render=False),
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False),
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False),
],
cache_examples=False,
)
# 启动 Gradio 应用
if __name__ == "__main__":
demo.launch()