File size: 15,276 Bytes
59ddae4
 
 
 
124e713
59ddae4
 
 
124e713
59ddae4
f00f46e
 
59ddae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301f98f
f00f46e
124e713
59ddae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch
import comfy.model_base
import comfy.ldm.modules.diffusionmodules.openaimodel
import comfy.samplers
import modules.anisotropic as anisotropic

from comfy.samplers import model_management, lcm, math
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed


sharpness = 2.0


def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={},
                      seed=None):
    def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
        area = (x_in.shape[2], x_in.shape[3], 0, 0)
        strength = 1.0
        if 'timestep_start' in cond[1]:
            timestep_start = cond[1]['timestep_start']
            if timestep_in[0] > timestep_start:
                return None
        if 'timestep_end' in cond[1]:
            timestep_end = cond[1]['timestep_end']
            if timestep_in[0] < timestep_end:
                return None
        if 'area' in cond[1]:
            area = cond[1]['area']
        if 'strength' in cond[1]:
            strength = cond[1]['strength']

        adm_cond = None
        if 'adm_encoded' in cond[1]:
            adm_cond = cond[1]['adm_encoded']

        input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
        if 'mask' in cond[1]:
            # Scale the mask to the size of the input
            # The mask should have been resized as we began the sampling process
            mask_strength = 1.0
            if "mask_strength" in cond[1]:
                mask_strength = cond[1]["mask_strength"]
            mask = cond[1]['mask']
            assert (mask.shape[1] == x_in.shape[2])
            assert (mask.shape[2] == x_in.shape[3])
            mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength
            mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
        else:
            mask = torch.ones_like(input_x)
        mult = mask * strength

        if 'mask' not in cond[1]:
            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1))

        conditionning = {}
        conditionning['c_crossattn'] = cond[0]
        if cond_concat_in is not None and len(cond_concat_in) > 0:
            cropped = []
            for x in cond_concat_in:
                cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
                cropped.append(cr)
            conditionning['c_concat'] = torch.cat(cropped, dim=1)

        if adm_cond is not None:
            conditionning['c_adm'] = adm_cond

        control = None
        if 'control' in cond[1]:
            control = cond[1]['control']

        patches = None
        if 'gligen' in cond[1]:
            gligen = cond[1]['gligen']
            patches = {}
            gligen_type = gligen[0]
            gligen_model = gligen[1]
            if gligen_type == "position":
                gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
            else:
                gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

            patches['middle_patch'] = [gligen_patch]

        return (input_x, mult, conditionning, area, control, patches)

    def cond_equal_size(c1, c2):
        if c1 is c2:
            return True
        if c1.keys() != c2.keys():
            return False
        if 'c_crossattn' in c1:
            s1 = c1['c_crossattn'].shape
            s2 = c2['c_crossattn'].shape
            if s1 != s2:
                if s1[0] != s2[0] or s1[2] != s2[2]:  # these 2 cases should not happen
                    return False

                mult_min = lcm(s1[1], s2[1])
                diff = mult_min // min(s1[1], s2[1])
                if diff > 4:  # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                    return False
        if 'c_concat' in c1:
            if c1['c_concat'].shape != c2['c_concat'].shape:
                return False
        if 'c_adm' in c1:
            if c1['c_adm'].shape != c2['c_adm'].shape:
                return False
        return True

    def can_concat_cond(c1, c2):
        if c1[0].shape != c2[0].shape:
            return False

        # control
        if (c1[4] is None) != (c2[4] is None):
            return False
        if c1[4] is not None:
            if c1[4] is not c2[4]:
                return False

        # patches
        if (c1[5] is None) != (c2[5] is None):
            return False
        if (c1[5] is not None):
            if c1[5] is not c2[5]:
                return False

        return cond_equal_size(c1[2], c2[2])

    def cond_cat(c_list):
        c_crossattn = []
        c_concat = []
        c_adm = []
        crossattn_max_len = 0
        for x in c_list:
            if 'c_crossattn' in x:
                c = x['c_crossattn']
                if crossattn_max_len == 0:
                    crossattn_max_len = c.shape[1]
                else:
                    crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                c_crossattn.append(c)
            if 'c_concat' in x:
                c_concat.append(x['c_concat'])
            if 'c_adm' in x:
                c_adm.append(x['c_adm'])
        out = {}
        c_crossattn_out = []
        for c in c_crossattn:
            if c.shape[1] < crossattn_max_len:
                c = c.repeat(1, crossattn_max_len // c.shape[1], 1)  # padding with repeat doesn't change result
            c_crossattn_out.append(c)

        if len(c_crossattn_out) > 0:
            out['c_crossattn'] = [torch.cat(c_crossattn_out)]
        if len(c_concat) > 0:
            out['c_concat'] = [torch.cat(c_concat)]
        if len(c_adm) > 0:
            out['c_adm'] = torch.cat(c_adm)
        return out

    def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in,
                               model_options):
        out_cond = torch.zeros_like(x_in)
        out_count = torch.ones_like(x_in) / 100000.0

        out_uncond = torch.zeros_like(x_in)
        out_uncond_count = torch.ones_like(x_in) / 100000.0

        COND = 0
        UNCOND = 1

        to_run = []
        for x in cond:
            p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
            if p is None:
                continue

            to_run += [(p, COND)]
        if uncond is not None:
            for x in uncond:
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

        while len(to_run) > 0:
            first = to_run[0]
            first_shape = first[0][0].shape
            to_batch_temp = []
            for x in range(len(to_run)):
                if can_concat_cond(to_run[x][0], first[0]):
                    to_batch_temp += [x]

            to_batch_temp.reverse()
            to_batch = to_batch_temp[:1]

            for i in range(1, len(to_batch_temp) + 1):
                batch_amount = to_batch_temp[:len(to_batch_temp) // i]
                if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                    to_batch = batch_amount
                    break

            input_x = []
            mult = []
            c = []
            cond_or_uncond = []
            area = []
            control = None
            patches = None
            for x in to_batch:
                o = to_run.pop(x)
                p = o[0]
                input_x += [p[0]]
                mult += [p[1]]
                c += [p[2]]
                area += [p[3]]
                cond_or_uncond += [o[1]]
                control = p[4]
                patches = p[5]

            batch_chunks = len(cond_or_uncond)
            input_x = torch.cat(input_x)
            c = cond_cat(c)
            timestep_ = torch.cat([timestep] * batch_chunks)

            if control is not None:
                c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

            transformer_options = {}
            if 'transformer_options' in model_options:
                transformer_options = model_options['transformer_options'].copy()

            if patches is not None:
                if "patches" in transformer_options:
                    cur_patches = transformer_options["patches"].copy()
                    for p in patches:
                        if p in cur_patches:
                            cur_patches[p] = cur_patches[p] + patches[p]
                        else:
                            cur_patches[p] = patches[p]
                else:
                    transformer_options["patches"] = patches

            c['transformer_options'] = transformer_options

            transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None]

            if 'model_function_wrapper' in model_options:
                output = model_options['model_function_wrapper'](model_function,
                                                                 {"input": input_x, "timestep": timestep_, "c": c,
                                                                  "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
            else:
                output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
            del input_x

            model_management.throw_exception_if_processing_interrupted()

            for o in range(batch_chunks):
                if cond_or_uncond[o] == COND:
                    out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
                                                                                                                  o] * \
                                                                                                              mult[o]
                    out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
                else:
                    out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
                                                                                                                    o] * \
                                                                                                                mult[o]
                    out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \
                    mult[o]
            del mult

        out_cond /= out_count
        del out_count
        out_uncond /= out_uncond_count
        del out_uncond_count

        return out_cond, out_uncond

    max_total_area = model_management.maximum_batch_area()
    if math.isclose(cond_scale, 1.0):
        uncond = None

    cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat,
                                          model_options)
    if "sampler_cfg_function" in model_options:
        args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
        return model_options["sampler_cfg_function"](args)
    else:
        return uncond + (cond - uncond) * cond_scale


def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
    uc_mask = transformer_options['uc_mask']
    transformer_options["original_shape"] = list(x.shape)
    transformer_options["current_index"] = 0

    hs = []
    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
    emb = self.time_embed(t_emb)

    if self.num_classes is not None:
        assert y.shape[0] == x.shape[0]
        emb = emb + self.label_emb(y)

    h = x.type(self.dtype)
    for id, module in enumerate(self.input_blocks):
        transformer_options["block"] = ("input", id)
        h = forward_timestep_embed(module, h, emb, context, transformer_options)
        if control is not None and 'input' in control and len(control['input']) > 0:
            ctrl = control['input'].pop()
            if ctrl is not None:
                h += ctrl
        hs.append(h)
    transformer_options["block"] = ("middle", 0)
    h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
    if control is not None and 'middle' in control and len(control['middle']) > 0:
        h += control['middle'].pop()

    for id, module in enumerate(self.output_blocks):
        transformer_options["block"] = ("output", id)
        hsp = hs.pop()
        if control is not None and 'output' in control and len(control['output']) > 0:
            ctrl = control['output'].pop()
            if ctrl is not None:
                hsp += ctrl

        h = torch.cat([h, hsp], dim=1)
        del hsp
        if len(hs) > 0:
            output_shape = hs[-1].shape
        else:
            output_shape = None
        h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
    h = h.type(x.dtype)
    x0 = self.out(h)

    alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone()
    alpha *= 0.001 * sharpness
    degraded_x0 = anisotropic.bilateral_blur(x0) * alpha + x0 * (1.0 - alpha)

    x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask)

    return x0


def sdxl_encode_adm_patched(self, **kwargs):
    clip_pooled = kwargs["pooled_output"]
    width = kwargs.get("width", 768)
    height = kwargs.get("height", 768)
    crop_w = kwargs.get("crop_w", 0)
    crop_h = kwargs.get("crop_h", 0)
    target_width = kwargs.get("target_width", width)
    target_height = kwargs.get("target_height", height)

    if kwargs.get("prompt_type", "") == "negative":
        width *= 0.8
        height *= 0.8
    elif kwargs.get("prompt_type", "") == "positive":
        width *= 1.5
        height *= 1.5

    out = []
    out.append(self.embedder(torch.Tensor([height])))
    out.append(self.embedder(torch.Tensor([width])))
    out.append(self.embedder(torch.Tensor([crop_h])))
    out.append(self.embedder(torch.Tensor([crop_w])))
    out.append(self.embedder(torch.Tensor([target_height])))
    out.append(self.embedder(torch.Tensor([target_width])))
    flat = torch.flatten(torch.cat(out))[None, ]
    return torch.cat((clip_pooled.to(flat.device), flat), dim=1)


def patch_all():
    comfy.samplers.sampling_function = sampling_function_patched
    comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
    comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched