Spaces:
Paused
Paused
File size: 15,251 Bytes
59ddae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import torch
import comfy.model_base
import comfy.ldm.modules.diffusionmodules.openaimodel
import comfy.samplers
from comfy.samplers import model_management, lcm, math
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed
from modules.filters import gaussian_filter_2d
def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={},
seed=None):
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'timestep_start' in cond[1]:
timestep_start = cond[1]['timestep_start']
if timestep_in[0] > timestep_start:
return None
if 'timestep_end' in cond[1]:
timestep_end = cond[1]['timestep_end']
if timestep_in[0] < timestep_end:
return None
if 'area' in cond[1]:
area = cond[1]['area']
if 'strength' in cond[1]:
strength = cond[1]['strength']
adm_cond = None
if 'adm_encoded' in cond[1]:
adm_cond = cond[1]['adm_encoded']
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
if 'mask' in cond[1]:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
assert (mask.shape[1] == x_in.shape[2])
assert (mask.shape[2] == x_in.shape[3])
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1))
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if cond_concat_in is not None and len(cond_concat_in) > 0:
cropped = []
for x in cond_concat_in:
cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
cropped.append(cr)
conditionning['c_concat'] = torch.cat(cropped, dim=1)
if adm_cond is not None:
conditionning['c_adm'] = adm_cond
control = None
if 'control' in cond[1]:
control = cond[1]['control']
patches = None
if 'gligen' in cond[1]:
gligen = cond[1]['gligen']
patches = {}
gligen_type = gligen[0]
gligen_model = gligen[1]
if gligen_type == "position":
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
else:
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch]
return (input_x, mult, conditionning, area, control, patches)
def cond_equal_size(c1, c2):
if c1 is c2:
return True
if c1.keys() != c2.keys():
return False
if 'c_crossattn' in c1:
s1 = c1['c_crossattn'].shape
s2 = c2['c_crossattn'].shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: # these 2 cases should not happen
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
if 'c_concat' in c1:
if c1['c_concat'].shape != c2['c_concat'].shape:
return False
if 'c_adm' in c1:
if c1['c_adm'].shape != c2['c_adm'].shape:
return False
return True
def can_concat_cond(c1, c2):
if c1[0].shape != c2[0].shape:
return False
# control
if (c1[4] is None) != (c2[4] is None):
return False
if c1[4] is not None:
if c1[4] is not c2[4]:
return False
# patches
if (c1[5] is None) != (c2[5] is None):
return False
if (c1[5] is not None):
if c1[5] is not c2[5]:
return False
return cond_equal_size(c1[2], c2[2])
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
crossattn_max_len = 0
for x in c_list:
if 'c_crossattn' in x:
c = x['c_crossattn']
if crossattn_max_len == 0:
crossattn_max_len = c.shape[1]
else:
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
c_crossattn.append(c)
if 'c_concat' in x:
c_concat.append(x['c_concat'])
if 'c_adm' in x:
c_adm.append(x['c_adm'])
out = {}
c_crossattn_out = []
for c in c_crossattn:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) # padding with repeat doesn't change result
c_crossattn_out.append(c)
if len(c_crossattn_out) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
if len(c_concat) > 0:
out['c_concat'] = [torch.cat(c_concat)]
if len(c_adm) > 0:
out['c_adm'] = torch.cat(c_adm)
return out
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in,
model_options):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in) / 100000.0
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in) / 100000.0
COND = 0
UNCOND = 1
to_run = []
for x in cond:
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, COND)]
if uncond is not None:
for x in uncond:
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp) // i]
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
control = None
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x += [p[0]]
mult += [p[1]]
c += [p[2]]
area += [p[3]]
cond_or_uncond += [o[1]]
control = p[4]
patches = p[5]
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = cond_cat(c)
timestep_ = torch.cat([timestep] * batch_chunks)
if control is not None:
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
transformer_options = {}
if 'transformer_options' in model_options:
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
c['transformer_options'] = transformer_options
transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None]
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_function,
{"input": input_x, "timestep": timestep_, "c": c,
"cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
else:
output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
del input_x
model_management.throw_exception_if_processing_interrupted()
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
o] * \
mult[o]
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
o] * \
mult[o]
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \
mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
max_total_area = model_management.maximum_batch_area()
if math.isclose(cond_scale, 1.0):
uncond = None
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat,
model_options)
if "sampler_cfg_function" in model_options:
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
return model_options["sampler_cfg_function"](args)
else:
return uncond + (cond - uncond) * cond_scale
def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
uc_mask = transformer_options['uc_mask']
transformer_options["original_shape"] = list(x.shape)
transformer_options["current_index"] = 0
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options)
if control is not None and 'input' in control and len(control['input']) > 0:
ctrl = control['input'].pop()
if ctrl is not None:
h += ctrl
hs.append(h)
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
if control is not None and 'middle' in control and len(control['middle']) > 0:
h += control['middle'].pop()
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
if control is not None and 'output' in control and len(control['output']) > 0:
ctrl = control['output'].pop()
if ctrl is not None:
hsp += ctrl
h = torch.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
h = h.type(x.dtype)
x0 = self.out(h)
alpha = 1.0 - ((timesteps / 999.0)[:, None, None, None].clone() ** 2.0)
alpha *= 0.01
degraded_x0 = gaussian_filter_2d(x0) * alpha + x0 * (1.0 - alpha)
x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask)
return x0
def sdxl_encode_adm_patched(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
if kwargs.get("prompt_type", "") == "negative":
width *= 0.8
height *= 0.8
elif kwargs.get("prompt_type", "") == "positive":
width *= 1.5
height *= 1.5
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
def patch_all():
comfy.samplers.sampling_function = sampling_function_patched
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched
|