File size: 20,746 Bytes
7386161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import math
from inspect import isfunction
from typing import Any, Optional

import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from packaging import version
from torch import nn

if version.parse(torch.__version__) >= version.parse("2.0.0"):
    SDP_IS_AVAILABLE = True
    from torch.backends.cuda import SDPBackend, sdp_kernel

    BACKEND_MAP = {
        SDPBackend.MATH: {
            "enable_math": True,
            "enable_flash": False,
            "enable_mem_efficient": False,
        },
        SDPBackend.FLASH_ATTENTION: {
            "enable_math": False,
            "enable_flash": True,
            "enable_mem_efficient": False,
        },
        SDPBackend.EFFICIENT_ATTENTION: {
            "enable_math": False,
            "enable_flash": False,
            "enable_mem_efficient": True,
        },
        None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
    }
else:
    from contextlib import nullcontext

    SDP_IS_AVAILABLE = False
    sdp_kernel = nullcontext
    BACKEND_MAP = {}
    print(
        f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
        f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
    )

try:
    import xformers
    import xformers.ops

    XFORMERS_IS_AVAILABLE = True
except:
    XFORMERS_IS_AVAILABLE = False
    print("no module 'xformers'. Processing without...")

from .diffusionmodules.util import checkpoint


def exists(val):
    return val is not None


def uniq(arr):
    return {el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = (
            nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
            if not glu
            else GEGLU(dim, inner_dim)
        )

        self.net = nn.Sequential(
            project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(
        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
    )


class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = rearrange(
            qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = rearrange(
            out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
        )
        return self.to_out(out)


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b (h w) c")
        k = rearrange(k, "b c h w -> b c (h w)")
        w_ = torch.einsum("bij,bjk->bik", q, k)

        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, "b c h w -> b c (h w)")
        w_ = rearrange(w_, "b i j -> b j i")
        h_ = torch.einsum("bij,bjk->bik", v, w_)
        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
        h_ = self.proj_out(h_)

        return x + h_


class CrossAttention(nn.Module):
    def __init__(
        self,
        query_dim,
        context_dim=None,
        heads=8,
        dim_head=64,
        dropout=0.0,
        backend=None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )
        self.backend = backend

    def forward(
        self,
        x,
        context=None,
        mask=None,
        additional_tokens=None,
        n_times_crossframe_attn_in_self=0,
    ):
        h = self.heads

        if additional_tokens is not None:
            # get the number of masked tokens at the beginning of the output sequence
            n_tokens_to_mask = additional_tokens.shape[1]
            # add additional token
            x = torch.cat([additional_tokens, x], dim=1)

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        if n_times_crossframe_attn_in_self:
            # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
            assert x.shape[0] % n_times_crossframe_attn_in_self == 0
            n_cp = x.shape[0] // n_times_crossframe_attn_in_self
            k = repeat(
                k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
            )
            v = repeat(
                v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
            )

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))

        ## old
        """
        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
        del q, k

        if exists(mask):
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        sim = sim.softmax(dim=-1)

        out = einsum('b i j, b j d -> b i d', sim, v)
        """
        ## new
        with sdp_kernel(**BACKEND_MAP[self.backend]):
            # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
            out = F.scaled_dot_product_attention(
                q, k, v, attn_mask=mask
            )  # scale is dim_head ** -0.5 per default

        del q, k, v
        out = rearrange(out, "b h n d -> b n (h d)", h=h)

        if additional_tokens is not None:
            # remove additional token
            out = out[:, n_tokens_to_mask:]
        return self.to_out(out)


class MemoryEfficientCrossAttention(nn.Module):
    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
    def __init__(
        self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
    ):
        super().__init__()
        print(
            f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
            f"{heads} heads with a dimension of {dim_head}."
        )
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )
        self.attention_op: Optional[Any] = None

    def forward(
        self,
        x,
        context=None,
        mask=None,
        additional_tokens=None,
        n_times_crossframe_attn_in_self=0,
    ):
        if additional_tokens is not None:
            # get the number of masked tokens at the beginning of the output sequence
            n_tokens_to_mask = additional_tokens.shape[1]
            # add additional token
            x = torch.cat([additional_tokens, x], dim=1)
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        if n_times_crossframe_attn_in_self:
            # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
            assert x.shape[0] % n_times_crossframe_attn_in_self == 0
            # n_cp = x.shape[0]//n_times_crossframe_attn_in_self
            k = repeat(
                k[::n_times_crossframe_attn_in_self],
                "b ... -> (b n) ...",
                n=n_times_crossframe_attn_in_self,
            )
            v = repeat(
                v[::n_times_crossframe_attn_in_self],
                "b ... -> (b n) ...",
                n=n_times_crossframe_attn_in_self,
            )

        b, _, _ = q.shape
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )

        # actually compute the attention, what we cannot get enough of
        out = xformers.ops.memory_efficient_attention(
            q, k, v, attn_bias=None, op=self.attention_op
        )

        # TODO: Use this directly in the attention operation, as a bias
        if exists(mask):
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        if additional_tokens is not None:
            # remove additional token
            out = out[:, n_tokens_to_mask:]
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,  # vanilla attention
        "softmax-xformers": MemoryEfficientCrossAttention,  # ampere
    }

    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
        disable_self_attn=False,
        attn_mode="softmax",
        sdp_backend=None,
    ):
        super().__init__()
        assert attn_mode in self.ATTENTION_MODES
        if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
            print(
                f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
                f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
            )
            attn_mode = "softmax"
        elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
            print(
                "We do not support vanilla attention anymore, as it is too expensive. Sorry."
            )
            if not XFORMERS_IS_AVAILABLE:
                assert (
                    False
                ), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
            else:
                print("Falling back to xformers efficient attention.")
                attn_mode = "softmax-xformers"
        attn_cls = self.ATTENTION_MODES[attn_mode]
        if version.parse(torch.__version__) >= version.parse("2.0.0"):
            assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
        else:
            assert sdp_backend is None
        self.disable_self_attn = disable_self_attn
        self.attn1 = attn_cls(
            query_dim=dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
            context_dim=context_dim if self.disable_self_attn else None,
            backend=sdp_backend,
        )  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = attn_cls(
            query_dim=dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
            backend=sdp_backend,
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint
        if self.checkpoint:
            print(f"{self.__class__.__name__} is using checkpointing")

    def forward(
        self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
    ):
        kwargs = {"x": x}

        if context is not None:
            kwargs.update({"context": context})

        if additional_tokens is not None:
            kwargs.update({"additional_tokens": additional_tokens})

        if n_times_crossframe_attn_in_self:
            kwargs.update(
                {"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
            )

        # return mixed_checkpoint(self._forward, kwargs, self.parameters(), self.checkpoint)
        return checkpoint(
            self._forward, (x, context), self.parameters(), self.checkpoint
        )

    def _forward(
        self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
    ):
        x = (
            self.attn1(
                self.norm1(x),
                context=context if self.disable_self_attn else None,
                additional_tokens=additional_tokens,
                n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
                if not self.disable_self_attn
                else 0,
            )
            + x
        )
        x = (
            self.attn2(
                self.norm2(x), context=context, additional_tokens=additional_tokens
            )
            + x
        )
        x = self.ff(self.norm3(x)) + x
        return x


class BasicTransformerSingleLayerBlock(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,  # vanilla attention
        "softmax-xformers": MemoryEfficientCrossAttention  # on the A100s not quite as fast as the above version
        # (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
    }

    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
        attn_mode="softmax",
    ):
        super().__init__()
        assert attn_mode in self.ATTENTION_MODES
        attn_cls = self.ATTENTION_MODES[attn_mode]
        self.attn1 = attn_cls(
            query_dim=dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
            context_dim=context_dim,
        )
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        return checkpoint(
            self._forward, (x, context), self.parameters(), self.checkpoint
        )

    def _forward(self, x, context=None):
        x = self.attn1(self.norm1(x), context=context) + x
        x = self.ff(self.norm2(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """

    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        context_dim=None,
        disable_self_attn=False,
        use_linear=False,
        attn_type="softmax",
        use_checkpoint=True,
        # sdp_backend=SDPBackend.FLASH_ATTENTION
        sdp_backend=None,
    ):
        super().__init__()
        print(
            f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
        )
        from omegaconf import ListConfig

        if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
            context_dim = [context_dim]
        if exists(context_dim) and isinstance(context_dim, list):
            if depth != len(context_dim):
                print(
                    f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
                    f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
                )
                # depth does not match context dims.
                assert all(
                    map(lambda x: x == context_dim[0], context_dim)
                ), "need homogenous context_dim to match depth automatically"
                context_dim = depth * [context_dim[0]]
        elif context_dim is None:
            context_dim = [None] * depth
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)
        if not use_linear:
            self.proj_in = nn.Conv2d(
                in_channels, inner_dim, kernel_size=1, stride=1, padding=0
            )
        else:
            self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_heads,
                    d_head,
                    dropout=dropout,
                    context_dim=context_dim[d],
                    disable_self_attn=disable_self_attn,
                    attn_mode=attn_type,
                    checkpoint=use_checkpoint,
                    sdp_backend=sdp_backend,
                )
                for d in range(depth)
            ]
        )
        if not use_linear:
            self.proj_out = zero_module(
                nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
            )
        else:
            # self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
            self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
        self.use_linear = use_linear

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
            context = [context]
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c").contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
            if i > 0 and len(context) == 1:
                i = 0  # use same context for each block
            x = block(x, context=context[i])
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in