Spaces:
Paused
Paused
File size: 9,071 Bytes
2494346 edc0c71 44d1f2e edc0c71 44d1f2e 7d697f7 9905ad3 edc0c71 b881d9e dbf3ae5 4c2ce48 3979c37 44d1f2e 4c2ce48 572c0ef 44d1f2e 5928536 9905ad3 5928536 ffcc874 5928536 edc0c71 7095c8c 12df4d8 a8aa05c d3090bd a8aa05c 967c482 a8aa05c 3979c37 a8aa05c edc0c71 5928536 bb0c03e dbf3ae5 dbdeecb 7d697f7 edc0c71 7d697f7 edc0c71 7095c8c edc0c71 7d697f7 b881d9e dbf3ae5 b881d9e 7d697f7 edc0c71 3d00867 44d1f2e 827a7ed bb0c03e 827a7ed dbdeecb 827a7ed c1f84af 827a7ed 9654763 16e8fe9 827a7ed c1f84af 827a7ed 9654763 827a7ed 5928536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import cuda_malloc
import os
import random
import cv2
import einops
import torch
import numpy as np
import comfy.model_management
import comfy.utils
from comfy.sd import load_checkpoint_guess_config, load_lora_for_models
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
from modules.samplers_advanced import KSampler, KSamplerWithRefiner
from modules.adm_patch import patch_negative_adm
from modules.cv2win32 import show_preview
patch_negative_adm()
opCLIPTextEncode = CLIPTextEncode()
opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()
class StableDiffusionModel:
def __init__(self, unet, vae, clip, clip_vision):
self.unet = unet
self.vae = vae
self.clip = clip
self.clip_vision = clip_vision
@torch.no_grad()
def load_model(ckpt_filename):
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename)
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision)
@torch.no_grad()
def load_lora(model, lora_filename, strength_model=1.0, strength_clip=1.0):
if strength_model == 0 and strength_clip == 0:
return model
lora = comfy.utils.load_torch_file(lora_filename, safe_load=True)
model.unet, model.clip = comfy.sd.load_lora_for_models(model.unet, model.clip, lora, strength_model, strength_clip)
return model
@torch.no_grad()
def encode_prompt_condition(clip, prompt):
return opCLIPTextEncode.encode(clip=clip, text=prompt)[0]
@torch.no_grad()
def generate_empty_latent(width=1024, height=1024, batch_size=1):
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
@torch.no_grad()
def decode_vae(vae, latent_image):
return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
def get_previewer(device, latent_format):
from latent_preview import TAESD, TAESDPreviewerImpl
taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx",
latent_format.taesd_decoder_name)))
if not os.path.exists(taesd_decoder_path):
print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}")
return None
taesd = TAESD(None, taesd_decoder_path).to(device)
def preview_function(x0, step, total_steps):
global cv2_is_top
with torch.no_grad():
x_sample = taesd.decoder(torch.nn.functional.avg_pool2d(x0, kernel_size=(2, 2))).detach() * 255.0
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')
x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
for i, s in enumerate(x_sample):
show_preview(f'OpenCV Diffusion Preview {i}', s, title=f'Preview Image {i} [{step}/{total_steps}]')
taesd.preview = preview_function
return taesd
@torch.no_grad()
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
force_full_denoise=False):
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
# SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
# "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
# "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
previewer = get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
if previewer and step % 3 == 0:
previewer.preview(x0, step, total_steps)
pbar.update_absolute(step + 1, total_steps, None)
sigmas = None
disable_pbar = False
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative, model.model_dtype())
sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
denoise=denoise, model_options=model.model_options)
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar,
seed=seed)
samples = samples.cpu()
cleanup_additional_models(models)
out = latent.copy()
out["samples"] = samples
return out
@torch.no_grad()
def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent,
seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
force_full_denoise=False):
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
# SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
# "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
# "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
previewer = get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
if previewer and step % 3 == 0:
previewer.preview(x0, step, total_steps)
pbar.update_absolute(step + 1, total_steps, None)
sigmas = None
disable_pbar = False
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
comfy.model_management.load_model_gpu(model)
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
refiner_positive_copy = broadcast_cond(refiner_positive, noise.shape[0], device)
refiner_negative_copy = broadcast_cond(refiner_negative, noise.shape[0], device)
models = load_additional_models(positive, negative, model.model_dtype())
sampler = KSamplerWithRefiner(model=model, refiner_model=refiner, steps=steps, device=device,
sampler=sampler_name, scheduler=scheduler,
denoise=denoise, model_options=model.model_options)
samples = sampler.sample(noise, positive_copy, negative_copy, refiner_positive=refiner_positive_copy,
refiner_negative=refiner_negative_copy, refiner_switch_step=refiner_switch_step,
cfg=cfg, latent_image=latent_image,
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
denoise_mask=noise_mask, sigmas=sigmas, callback_function=callback, disable_pbar=disable_pbar,
seed=seed)
samples = samples.cpu()
cleanup_additional_models(models)
out = latent.copy()
out["samples"] = samples
return out
@torch.no_grad()
def image_to_numpy(x):
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
|