File size: 9,071 Bytes
2494346
 
edc0c71
44d1f2e
edc0c71
 
44d1f2e
 
 
7d697f7
 
 
9905ad3
edc0c71
b881d9e
dbf3ae5
4c2ce48
3979c37
44d1f2e
4c2ce48
572c0ef
44d1f2e
 
 
 
5928536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9905ad3
 
 
 
 
 
 
 
 
 
5928536
 
 
 
 
ffcc874
 
 
 
 
5928536
 
 
 
 
edc0c71
 
 
 
 
 
 
 
 
 
 
7095c8c
12df4d8
a8aa05c
d3090bd
a8aa05c
967c482
a8aa05c
3979c37
a8aa05c
 
 
edc0c71
 
 
5928536
bb0c03e
 
dbf3ae5
dbdeecb
 
 
 
 
7d697f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc0c71
7d697f7
 
 
 
edc0c71
7095c8c
edc0c71
7d697f7
b881d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf3ae5
b881d9e
 
 
 
 
 
 
 
 
 
 
7d697f7
 
edc0c71
3d00867
44d1f2e
 
827a7ed
 
bb0c03e
 
827a7ed
dbdeecb
 
 
 
 
827a7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f84af
 
 
827a7ed
 
9654763
16e8fe9
 
827a7ed
c1f84af
 
 
827a7ed
9654763
827a7ed
 
 
 
 
 
 
 
 
 
 
 
5928536
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import cuda_malloc

import os
import random
import cv2
import einops
import torch
import numpy as np

import comfy.model_management
import comfy.utils

from comfy.sd import load_checkpoint_guess_config, load_lora_for_models
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
from modules.samplers_advanced import KSampler, KSamplerWithRefiner
from modules.adm_patch import patch_negative_adm
from modules.cv2win32 import show_preview


patch_negative_adm()
opCLIPTextEncode = CLIPTextEncode()
opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()


class StableDiffusionModel:
    def __init__(self, unet, vae, clip, clip_vision):
        self.unet = unet
        self.vae = vae
        self.clip = clip
        self.clip_vision = clip_vision


@torch.no_grad()
def load_model(ckpt_filename):
    unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename)
    return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision)


@torch.no_grad()
def load_lora(model, lora_filename, strength_model=1.0, strength_clip=1.0):
    if strength_model == 0 and strength_clip == 0:
        return model

    lora = comfy.utils.load_torch_file(lora_filename, safe_load=True)
    model.unet, model.clip = comfy.sd.load_lora_for_models(model.unet, model.clip, lora, strength_model, strength_clip)
    return model


@torch.no_grad()
def encode_prompt_condition(clip, prompt):
    return opCLIPTextEncode.encode(clip=clip, text=prompt)[0]


@torch.no_grad()
def generate_empty_latent(width=1024, height=1024, batch_size=1):
    return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]


@torch.no_grad()
def decode_vae(vae, latent_image):
    return opVAEDecode.decode(samples=latent_image, vae=vae)[0]


def get_previewer(device, latent_format):
    from latent_preview import TAESD, TAESDPreviewerImpl
    taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx",
                                                                       latent_format.taesd_decoder_name)))

    if not os.path.exists(taesd_decoder_path):
        print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}")
        return None

    taesd = TAESD(None, taesd_decoder_path).to(device)

    def preview_function(x0, step, total_steps):
        global cv2_is_top
        with torch.no_grad():
            x_sample = taesd.decoder(torch.nn.functional.avg_pool2d(x0, kernel_size=(2, 2))).detach() * 255.0
            x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')
            x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
            for i, s in enumerate(x_sample):
                show_preview(f'OpenCV Diffusion Preview {i}', s, title=f'Preview Image {i} [{step}/{total_steps}]')

    taesd.preview = preview_function

    return taesd


@torch.no_grad()
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
             scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
             force_full_denoise=False):
    # SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
    # SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
    #             "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
    #             "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]

    seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)

    device = comfy.model_management.get_torch_device()
    latent_image = latent["samples"]

    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    previewer = get_previewer(device, model.model.latent_format)

    pbar = comfy.utils.ProgressBar(steps)

    def callback(step, x0, x, total_steps):
        if previewer and step % 3 == 0:
            previewer.preview(x0, step, total_steps)
        pbar.update_absolute(step + 1, total_steps, None)

    sigmas = None
    disable_pbar = False

    if noise_mask is not None:
        noise_mask = prepare_mask(noise_mask, noise.shape, device)

    comfy.model_management.load_model_gpu(model)
    real_model = model.model

    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = broadcast_cond(positive, noise.shape[0], device)
    negative_copy = broadcast_cond(negative, noise.shape[0], device)

    models = load_additional_models(positive, negative, model.model_dtype())

    sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
                       denoise=denoise, model_options=model.model_options)

    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
                             start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
                             denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar,
                             seed=seed)

    samples = samples.cpu()

    cleanup_additional_models(models)

    out = latent.copy()
    out["samples"] = samples

    return out


@torch.no_grad()
def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent,
                          seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
                          scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
                          force_full_denoise=False):
    # SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
    # SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
    #             "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
    #             "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]

    seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)

    device = comfy.model_management.get_torch_device()
    latent_image = latent["samples"]

    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    previewer = get_previewer(device, model.model.latent_format)

    pbar = comfy.utils.ProgressBar(steps)

    def callback(step, x0, x, total_steps):
        if previewer and step % 3 == 0:
            previewer.preview(x0, step, total_steps)
        pbar.update_absolute(step + 1, total_steps, None)

    sigmas = None
    disable_pbar = False

    if noise_mask is not None:
        noise_mask = prepare_mask(noise_mask, noise.shape, device)

    comfy.model_management.load_model_gpu(model)

    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = broadcast_cond(positive, noise.shape[0], device)
    negative_copy = broadcast_cond(negative, noise.shape[0], device)

    refiner_positive_copy = broadcast_cond(refiner_positive, noise.shape[0], device)
    refiner_negative_copy = broadcast_cond(refiner_negative, noise.shape[0], device)

    models = load_additional_models(positive, negative, model.model_dtype())

    sampler = KSamplerWithRefiner(model=model, refiner_model=refiner, steps=steps, device=device,
                                  sampler=sampler_name, scheduler=scheduler,
                                  denoise=denoise, model_options=model.model_options)

    samples = sampler.sample(noise, positive_copy, negative_copy, refiner_positive=refiner_positive_copy,
                             refiner_negative=refiner_negative_copy, refiner_switch_step=refiner_switch_step,
                             cfg=cfg, latent_image=latent_image,
                             start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
                             denoise_mask=noise_mask, sigmas=sigmas, callback_function=callback, disable_pbar=disable_pbar,
                             seed=seed)

    samples = samples.cpu()

    cleanup_additional_models(models)

    out = latent.copy()
    out["samples"] = samples

    return out


@torch.no_grad()
def image_to_numpy(x):
    return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]