File size: 11,470 Bytes
7386161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import re
from abc import abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, Tuple, Union

import pytorch_lightning as pl
import torch
from omegaconf import ListConfig
from packaging import version
from safetensors.torch import load_file as load_safetensors

from ..modules.diffusionmodules.model import Decoder, Encoder
from ..modules.distributions.distributions import DiagonalGaussianDistribution
from ..modules.ema import LitEma
from ..util import default, get_obj_from_str, instantiate_from_config


class AbstractAutoencoder(pl.LightningModule):
    """
    This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
    unCLIP models, etc. Hence, it is fairly general, and specific features
    (e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
    """

    def __init__(
        self,
        ema_decay: Union[None, float] = None,
        monitor: Union[None, str] = None,
        input_key: str = "jpg",
        ckpt_path: Union[None, str] = None,
        ignore_keys: Union[Tuple, list, ListConfig] = (),
    ):
        super().__init__()
        self.input_key = input_key
        self.use_ema = ema_decay is not None
        if monitor is not None:
            self.monitor = monitor

        if self.use_ema:
            self.model_ema = LitEma(self, decay=ema_decay)
            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

        if version.parse(torch.__version__) >= version.parse("2.0.0"):
            self.automatic_optimization = False

    def init_from_ckpt(
        self, path: str, ignore_keys: Union[Tuple, list, ListConfig] = tuple()
    ) -> None:
        if path.endswith("ckpt"):
            sd = torch.load(path, map_location="cpu")["state_dict"]
        elif path.endswith("safetensors"):
            sd = load_safetensors(path)
        else:
            raise NotImplementedError

        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if re.match(ik, k):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        missing, unexpected = self.load_state_dict(sd, strict=False)
        print(
            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
        )
        if len(missing) > 0:
            print(f"Missing Keys: {missing}")
        if len(unexpected) > 0:
            print(f"Unexpected Keys: {unexpected}")

    @abstractmethod
    def get_input(self, batch) -> Any:
        raise NotImplementedError()

    def on_train_batch_end(self, *args, **kwargs):
        # for EMA computation
        if self.use_ema:
            self.model_ema(self)

    @contextmanager
    def ema_scope(self, context=None):
        if self.use_ema:
            self.model_ema.store(self.parameters())
            self.model_ema.copy_to(self)
            if context is not None:
                print(f"{context}: Switched to EMA weights")
        try:
            yield None
        finally:
            if self.use_ema:
                self.model_ema.restore(self.parameters())
                if context is not None:
                    print(f"{context}: Restored training weights")

    @abstractmethod
    def encode(self, *args, **kwargs) -> torch.Tensor:
        raise NotImplementedError("encode()-method of abstract base class called")

    @abstractmethod
    def decode(self, *args, **kwargs) -> torch.Tensor:
        raise NotImplementedError("decode()-method of abstract base class called")

    def instantiate_optimizer_from_config(self, params, lr, cfg):
        print(f"loading >>> {cfg['target']} <<< optimizer from config")
        return get_obj_from_str(cfg["target"])(
            params, lr=lr, **cfg.get("params", dict())
        )

    def configure_optimizers(self) -> Any:
        raise NotImplementedError()


class AutoencodingEngine(AbstractAutoencoder):
    """
    Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
    (we also restore them explicitly as special cases for legacy reasons).
    Regularizations such as KL or VQ are moved to the regularizer class.
    """

    def __init__(
        self,
        *args,
        encoder_config: Dict,
        decoder_config: Dict,
        loss_config: Dict,
        regularizer_config: Dict,
        optimizer_config: Union[Dict, None] = None,
        lr_g_factor: float = 1.0,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        # todo: add options to freeze encoder/decoder
        self.encoder = instantiate_from_config(encoder_config)
        self.decoder = instantiate_from_config(decoder_config)
        self.loss = instantiate_from_config(loss_config)
        self.regularization = instantiate_from_config(regularizer_config)
        self.optimizer_config = default(
            optimizer_config, {"target": "torch.optim.Adam"}
        )
        self.lr_g_factor = lr_g_factor

    def get_input(self, batch: Dict) -> torch.Tensor:
        # assuming unified data format, dataloader returns a dict.
        # image tensors should be scaled to -1 ... 1 and in channels-first format (e.g., bchw instead if bhwc)
        return batch[self.input_key]

    def get_autoencoder_params(self) -> list:
        params = (
            list(self.encoder.parameters())
            + list(self.decoder.parameters())
            + list(self.regularization.get_trainable_parameters())
            + list(self.loss.get_trainable_autoencoder_parameters())
        )
        return params

    def get_discriminator_params(self) -> list:
        params = list(self.loss.get_trainable_parameters())  # e.g., discriminator
        return params

    def get_last_layer(self):
        return self.decoder.get_last_layer()

    def encode(self, x: Any, return_reg_log: bool = False) -> Any:
        z = self.encoder(x)
        z, reg_log = self.regularization(z)
        if return_reg_log:
            return z, reg_log
        return z

    def decode(self, z: Any) -> torch.Tensor:
        x = self.decoder(z)
        return x

    def forward(self, x: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        z, reg_log = self.encode(x, return_reg_log=True)
        dec = self.decode(z)
        return z, dec, reg_log

    def training_step(self, batch, batch_idx, optimizer_idx) -> Any:
        x = self.get_input(batch)
        z, xrec, regularization_log = self(x)

        if optimizer_idx == 0:
            # autoencode
            aeloss, log_dict_ae = self.loss(
                regularization_log,
                x,
                xrec,
                optimizer_idx,
                self.global_step,
                last_layer=self.get_last_layer(),
                split="train",
            )

            self.log_dict(
                log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True
            )
            return aeloss

        if optimizer_idx == 1:
            # discriminator
            discloss, log_dict_disc = self.loss(
                regularization_log,
                x,
                xrec,
                optimizer_idx,
                self.global_step,
                last_layer=self.get_last_layer(),
                split="train",
            )
            self.log_dict(
                log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True
            )
            return discloss

    def validation_step(self, batch, batch_idx) -> Dict:
        log_dict = self._validation_step(batch, batch_idx)
        with self.ema_scope():
            log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
            log_dict.update(log_dict_ema)
        return log_dict

    def _validation_step(self, batch, batch_idx, postfix="") -> Dict:
        x = self.get_input(batch)

        z, xrec, regularization_log = self(x)
        aeloss, log_dict_ae = self.loss(
            regularization_log,
            x,
            xrec,
            0,
            self.global_step,
            last_layer=self.get_last_layer(),
            split="val" + postfix,
        )

        discloss, log_dict_disc = self.loss(
            regularization_log,
            x,
            xrec,
            1,
            self.global_step,
            last_layer=self.get_last_layer(),
            split="val" + postfix,
        )
        self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
        log_dict_ae.update(log_dict_disc)
        self.log_dict(log_dict_ae)
        return log_dict_ae

    def configure_optimizers(self) -> Any:
        ae_params = self.get_autoencoder_params()
        disc_params = self.get_discriminator_params()

        opt_ae = self.instantiate_optimizer_from_config(
            ae_params,
            default(self.lr_g_factor, 1.0) * self.learning_rate,
            self.optimizer_config,
        )
        opt_disc = self.instantiate_optimizer_from_config(
            disc_params, self.learning_rate, self.optimizer_config
        )

        return [opt_ae, opt_disc], []

    @torch.no_grad()
    def log_images(self, batch: Dict, **kwargs) -> Dict:
        log = dict()
        x = self.get_input(batch)
        _, xrec, _ = self(x)
        log["inputs"] = x
        log["reconstructions"] = xrec
        with self.ema_scope():
            _, xrec_ema, _ = self(x)
            log["reconstructions_ema"] = xrec_ema
        return log


class AutoencoderKL(AutoencodingEngine):
    def __init__(self, embed_dim: int, **kwargs):
        ddconfig = kwargs.pop("ddconfig")
        ckpt_path = kwargs.pop("ckpt_path", None)
        ignore_keys = kwargs.pop("ignore_keys", ())
        super().__init__(
            encoder_config={"target": "torch.nn.Identity"},
            decoder_config={"target": "torch.nn.Identity"},
            regularizer_config={"target": "torch.nn.Identity"},
            loss_config=kwargs.pop("lossconfig"),
            **kwargs,
        )
        assert ddconfig["double_z"]
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)
        self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
        self.embed_dim = embed_dim

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

    def encode(self, x):
        assert (
            not self.training
        ), f"{self.__class__.__name__} only supports inference currently"
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z, **decoder_kwargs):
        z = self.post_quant_conv(z)
        dec = self.decoder(z, **decoder_kwargs)
        return dec


class AutoencoderKLInferenceWrapper(AutoencoderKL):
    def encode(self, x):
        return super().encode(x).sample()


class IdentityFirstStage(AbstractAutoencoder):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def get_input(self, x: Any) -> Any:
        return x

    def encode(self, x: Any, *args, **kwargs) -> Any:
        return x

    def decode(self, x: Any, *args, **kwargs) -> Any:
        return x