Spaces:
Paused
Paused
File size: 11,470 Bytes
7386161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import re
from abc import abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, Tuple, Union
import pytorch_lightning as pl
import torch
from omegaconf import ListConfig
from packaging import version
from safetensors.torch import load_file as load_safetensors
from ..modules.diffusionmodules.model import Decoder, Encoder
from ..modules.distributions.distributions import DiagonalGaussianDistribution
from ..modules.ema import LitEma
from ..util import default, get_obj_from_str, instantiate_from_config
class AbstractAutoencoder(pl.LightningModule):
"""
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
unCLIP models, etc. Hence, it is fairly general, and specific features
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
"""
def __init__(
self,
ema_decay: Union[None, float] = None,
monitor: Union[None, str] = None,
input_key: str = "jpg",
ckpt_path: Union[None, str] = None,
ignore_keys: Union[Tuple, list, ListConfig] = (),
):
super().__init__()
self.input_key = input_key
self.use_ema = ema_decay is not None
if monitor is not None:
self.monitor = monitor
if self.use_ema:
self.model_ema = LitEma(self, decay=ema_decay)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
if version.parse(torch.__version__) >= version.parse("2.0.0"):
self.automatic_optimization = False
def init_from_ckpt(
self, path: str, ignore_keys: Union[Tuple, list, ListConfig] = tuple()
) -> None:
if path.endswith("ckpt"):
sd = torch.load(path, map_location="cpu")["state_dict"]
elif path.endswith("safetensors"):
sd = load_safetensors(path)
else:
raise NotImplementedError
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if re.match(ik, k):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
@abstractmethod
def get_input(self, batch) -> Any:
raise NotImplementedError()
def on_train_batch_end(self, *args, **kwargs):
# for EMA computation
if self.use_ema:
self.model_ema(self)
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
@abstractmethod
def encode(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("encode()-method of abstract base class called")
@abstractmethod
def decode(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("decode()-method of abstract base class called")
def instantiate_optimizer_from_config(self, params, lr, cfg):
print(f"loading >>> {cfg['target']} <<< optimizer from config")
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)
def configure_optimizers(self) -> Any:
raise NotImplementedError()
class AutoencodingEngine(AbstractAutoencoder):
"""
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
(we also restore them explicitly as special cases for legacy reasons).
Regularizations such as KL or VQ are moved to the regularizer class.
"""
def __init__(
self,
*args,
encoder_config: Dict,
decoder_config: Dict,
loss_config: Dict,
regularizer_config: Dict,
optimizer_config: Union[Dict, None] = None,
lr_g_factor: float = 1.0,
**kwargs,
):
super().__init__(*args, **kwargs)
# todo: add options to freeze encoder/decoder
self.encoder = instantiate_from_config(encoder_config)
self.decoder = instantiate_from_config(decoder_config)
self.loss = instantiate_from_config(loss_config)
self.regularization = instantiate_from_config(regularizer_config)
self.optimizer_config = default(
optimizer_config, {"target": "torch.optim.Adam"}
)
self.lr_g_factor = lr_g_factor
def get_input(self, batch: Dict) -> torch.Tensor:
# assuming unified data format, dataloader returns a dict.
# image tensors should be scaled to -1 ... 1 and in channels-first format (e.g., bchw instead if bhwc)
return batch[self.input_key]
def get_autoencoder_params(self) -> list:
params = (
list(self.encoder.parameters())
+ list(self.decoder.parameters())
+ list(self.regularization.get_trainable_parameters())
+ list(self.loss.get_trainable_autoencoder_parameters())
)
return params
def get_discriminator_params(self) -> list:
params = list(self.loss.get_trainable_parameters()) # e.g., discriminator
return params
def get_last_layer(self):
return self.decoder.get_last_layer()
def encode(self, x: Any, return_reg_log: bool = False) -> Any:
z = self.encoder(x)
z, reg_log = self.regularization(z)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: Any) -> torch.Tensor:
x = self.decoder(z)
return x
def forward(self, x: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
z, reg_log = self.encode(x, return_reg_log=True)
dec = self.decode(z)
return z, dec, reg_log
def training_step(self, batch, batch_idx, optimizer_idx) -> Any:
x = self.get_input(batch)
z, xrec, regularization_log = self(x)
if optimizer_idx == 0:
# autoencode
aeloss, log_dict_ae = self.loss(
regularization_log,
x,
xrec,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log_dict(
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True
)
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(
regularization_log,
x,
xrec,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log_dict(
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True
)
return discloss
def validation_step(self, batch, batch_idx) -> Dict:
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
log_dict.update(log_dict_ema)
return log_dict
def _validation_step(self, batch, batch_idx, postfix="") -> Dict:
x = self.get_input(batch)
z, xrec, regularization_log = self(x)
aeloss, log_dict_ae = self.loss(
regularization_log,
x,
xrec,
0,
self.global_step,
last_layer=self.get_last_layer(),
split="val" + postfix,
)
discloss, log_dict_disc = self.loss(
regularization_log,
x,
xrec,
1,
self.global_step,
last_layer=self.get_last_layer(),
split="val" + postfix,
)
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
log_dict_ae.update(log_dict_disc)
self.log_dict(log_dict_ae)
return log_dict_ae
def configure_optimizers(self) -> Any:
ae_params = self.get_autoencoder_params()
disc_params = self.get_discriminator_params()
opt_ae = self.instantiate_optimizer_from_config(
ae_params,
default(self.lr_g_factor, 1.0) * self.learning_rate,
self.optimizer_config,
)
opt_disc = self.instantiate_optimizer_from_config(
disc_params, self.learning_rate, self.optimizer_config
)
return [opt_ae, opt_disc], []
@torch.no_grad()
def log_images(self, batch: Dict, **kwargs) -> Dict:
log = dict()
x = self.get_input(batch)
_, xrec, _ = self(x)
log["inputs"] = x
log["reconstructions"] = xrec
with self.ema_scope():
_, xrec_ema, _ = self(x)
log["reconstructions_ema"] = xrec_ema
return log
class AutoencoderKL(AutoencodingEngine):
def __init__(self, embed_dim: int, **kwargs):
ddconfig = kwargs.pop("ddconfig")
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", ())
super().__init__(
encoder_config={"target": "torch.nn.Identity"},
decoder_config={"target": "torch.nn.Identity"},
regularizer_config={"target": "torch.nn.Identity"},
loss_config=kwargs.pop("lossconfig"),
**kwargs,
)
assert ddconfig["double_z"]
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def encode(self, x):
assert (
not self.training
), f"{self.__class__.__name__} only supports inference currently"
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z, **decoder_kwargs):
z = self.post_quant_conv(z)
dec = self.decoder(z, **decoder_kwargs)
return dec
class AutoencoderKLInferenceWrapper(AutoencoderKL):
def encode(self, x):
return super().encode(x).sample()
class IdentityFirstStage(AbstractAutoencoder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def get_input(self, x: Any) -> Any:
return x
def encode(self, x: Any, *args, **kwargs) -> Any:
return x
def decode(self, x: Any, *args, **kwargs) -> Any:
return x
|