Osterkarten / modules /samplers_advanced.py
lllyasviel's picture
i
4744be5
raw
history blame
11.7 kB
from comfy.samplers import *
import comfy.model_management
class KSamplerWithRefiner:
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
self.model_patcher = model
self.refiner_model_patcher = refiner_model
self.model = model.model
self.refiner_model = refiner_model.model
self.model_denoise = CFGNoisePredictor(self.model)
self.refiner_model_denoise = CFGNoisePredictor(self.refiner_model)
if self.model.model_type == model_base.ModelType.V_PREDICTION:
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
else:
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
if self.refiner_model.model_type == model_base.ModelType.V_PREDICTION:
self.refiner_model_wrap = CompVisVDenoiser(self.refiner_model_denoise, quantize=True)
else:
self.refiner_model_wrap = k_diffusion_external.CompVisDenoiser(self.refiner_model_denoise, quantize=True)
self.model_k = KSamplerX0Inpaint(self.model_wrap)
self.refiner_model_k = KSamplerX0Inpaint(self.refiner_model_wrap)
self.device = device
if scheduler not in self.SCHEDULERS:
scheduler = self.SCHEDULERS[0]
if sampler not in self.SAMPLERS:
sampler = self.SAMPLERS[0]
self.scheduler = scheduler
self.sampler = sampler
self.sigma_min = float(self.model_wrap.sigma_min)
self.sigma_max = float(self.model_wrap.sigma_max)
self.set_steps(steps, denoise)
self.denoise = denoise
self.model_options = model_options
def calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "exponential":
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min,
sigma_max=self.sigma_max)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps)
elif self.scheduler == "ddim_uniform":
sigmas = ddim_scheduler(self.model_wrap, steps)
else:
print("error invalid scheduler", self.scheduler)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None or denoise > 0.9999:
self.sigmas = self.calculate_sigmas(steps).to(self.device)
else:
new_steps = int(steps / denoise)
sigmas = self.calculate_sigmas(new_steps).to(self.device)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, refiner_positive, refiner_negative, cfg, latent_image=None,
start_step=None, last_step=None, refiner_switch_step=None,
force_full_denoise=False, denoise_mask=None, sigmas=None, callback_function=None, disable_pbar=False, seed=None):
if sigmas is None:
sigmas = self.sigmas
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
sigma_min = sigmas[last_step]
sigmas = sigmas[:last_step + 1]
if force_full_denoise:
sigmas[-1] = 0
if start_step is not None:
if start_step < (len(sigmas) - 1):
sigmas = sigmas[start_step:]
else:
if latent_image is not None:
return latent_image
else:
return torch.zeros_like(noise)
positive = positive[:]
negative = negative[:]
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
calculate_start_end_timesteps(self.model_wrap, negative)
calculate_start_end_timesteps(self.model_wrap, positive)
# make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
pre_run_control(self.model_wrap, negative + positive)
apply_empty_x_to_equal_area(
list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control',
lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if self.model.is_adm():
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
"positive")
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
"negative")
refiner_positive = refiner_positive[:]
refiner_negative = refiner_negative[:]
resolve_cond_masks(refiner_positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(refiner_negative, noise.shape[2], noise.shape[3], self.device)
calculate_start_end_timesteps(self.refiner_model_wrap, refiner_positive)
calculate_start_end_timesteps(self.refiner_model_wrap, refiner_negative)
# make sure each cond area has an opposite one with the same area
for c in refiner_positive:
create_cond_with_same_area_if_none(refiner_negative, c)
for c in refiner_negative:
create_cond_with_same_area_if_none(refiner_positive, c)
if self.model.is_adm():
refiner_positive = encode_adm(self.refiner_model, refiner_positive, noise.shape[0],
noise.shape[3], noise.shape[2], self.device, "positive")
refiner_negative = encode_adm(self.refiner_model, refiner_negative, noise.shape[0],
noise.shape[3], noise.shape[2], self.device, "negative")
def refiner_switch():
comfy.model_management.load_model_gpu(self.refiner_model_patcher)
self.model_denoise.inner_model = self.refiner_model_denoise.inner_model
for i in range(len(positive)):
positive[i] = refiner_positive[i]
for i in range(len(negative)):
negative[i] = refiner_negative[i]
print('Refiner swapped.')
return
def callback(step, x0, x, total_steps):
if step == refiner_switch_step:
refiner_switch()
if callback_function is not None:
callback_function(step, x0, x, total_steps)
if latent_image is not None:
latent_image = self.model.process_latent_in(latent_image)
extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": self.model_options,
"seed": seed}
cond_concat = None
if hasattr(self.model, 'concat_keys'): # inpaint
cond_concat = []
for ck in self.model.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:, :1])
elif ck == "masked_image":
cond_concat.append(
latent_image) # NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:, :1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
extra_args["cond_concat"] = cond_concat
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
max_denoise = False
else:
max_denoise = True
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
sampling_function=sampling_function, max_denoise=max_denoise,
extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
disable=disable_pbar)
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
sampling_function=sampling_function, max_denoise=max_denoise,
extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
variant='bh2', disable=disable_pbar)
elif self.sampler == "ddim":
raise NotImplementedError('Swapped Refiner Does not support DDIM.')
else:
extra_args["denoise_mask"] = denoise_mask
self.model_k.latent_image = latent_image
self.model_k.noise = noise
if max_denoise:
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
else:
noise = noise * sigmas[0]
k_callback = None
total_steps = len(sigmas) - 1
if callback is not None:
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps,
extra_args=extra_args, callback=k_callback,
disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0],
extra_args=extra_args, callback=k_callback,
disable=disable_pbar)
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas,
extra_args=extra_args,
callback=k_callback,
disable=disable_pbar)
return self.model.process_latent_out(samples.to(torch.float32))