Spaces:
Paused
Paused
import os | |
import random | |
import cv2 | |
import einops | |
import torch | |
import numpy as np | |
import comfy.model_management | |
import comfy.utils | |
from comfy.sd import load_checkpoint_guess_config | |
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode | |
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models | |
from modules.samplers_advanced import KSampler, KSamplerWithRefiner | |
from modules.adm_patch import patch_negative_adm | |
patch_negative_adm() | |
opCLIPTextEncode = CLIPTextEncode() | |
opEmptyLatentImage = EmptyLatentImage() | |
opVAEDecode = VAEDecode() | |
class StableDiffusionModel: | |
def __init__(self, unet, vae, clip, clip_vision): | |
self.unet = unet | |
self.vae = vae | |
self.clip = clip | |
self.clip_vision = clip_vision | |
def load_model(ckpt_filename): | |
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename) | |
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision) | |
def encode_prompt_condition(clip, prompt): | |
return opCLIPTextEncode.encode(clip=clip, text=prompt)[0] | |
def generate_empty_latent(width=1024, height=1024, batch_size=1): | |
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0] | |
def decode_vae(vae, latent_image): | |
return opVAEDecode.decode(samples=latent_image, vae=vae)[0] | |
def get_previewer(device, latent_format): | |
from latent_preview import TAESD, TAESDPreviewerImpl | |
taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx", | |
latent_format.taesd_decoder_name))) | |
if not os.path.exists(taesd_decoder_path): | |
print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}") | |
return None | |
taesd = TAESD(None, taesd_decoder_path).to(device) | |
def preview_function(x0, step, total_steps): | |
with torch.no_grad(): | |
x_sample = taesd.decoder(x0).detach() * 255.0 | |
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c') | |
x_sample = x_sample.cpu().numpy()[..., ::-1].copy().clip(0, 255).astype(np.uint8) | |
for i, s in enumerate(x_sample): | |
flag = f'OpenCV Diffusion Preview {i}' | |
cv2.imshow(flag, s) | |
cv2.setWindowTitle(flag, f'Preview Image {i} [{step}/{total_steps}]') | |
cv2.setWindowProperty(flag, cv2.WND_PROP_TOPMOST, 1) | |
cv2.waitKey(1) | |
taesd.preview = preview_function | |
return taesd | |
def close_all_preview(): | |
cv2.destroyAllWindows() | |
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='euler_ancestral', | |
scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, | |
force_full_denoise=False): | |
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) | |
device = comfy.model_management.get_torch_device() | |
latent_image = latent["samples"] | |
if disable_noise: | |
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
else: | |
batch_inds = latent["batch_index"] if "batch_index" in latent else None | |
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = latent["noise_mask"] | |
previewer = get_previewer(device, model.model.latent_format) | |
pbar = comfy.utils.ProgressBar(steps) | |
def callback(step, x0, x, total_steps): | |
if previewer and step % 3 == 0: | |
previewer.preview(x0, step, total_steps) | |
pbar.update_absolute(step + 1, total_steps, None) | |
sigmas = None | |
disable_pbar = False | |
if noise_mask is not None: | |
noise_mask = prepare_mask(noise_mask, noise.shape, device) | |
comfy.model_management.load_model_gpu(model) | |
real_model = model.model | |
noise = noise.to(device) | |
latent_image = latent_image.to(device) | |
positive_copy = broadcast_cond(positive, noise.shape[0], device) | |
negative_copy = broadcast_cond(negative, noise.shape[0], device) | |
models = load_additional_models(positive, negative, model.model_dtype()) | |
sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, | |
denoise=denoise, model_options=model.model_options) | |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, | |
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, | |
denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, | |
seed=seed) | |
samples = samples.cpu() | |
cleanup_additional_models(models) | |
out = latent.copy() | |
out["samples"] = samples | |
return out | |
def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent, | |
seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='euler_ancestral', | |
scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, | |
force_full_denoise=False): | |
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) | |
device = comfy.model_management.get_torch_device() | |
latent_image = latent["samples"] | |
if disable_noise: | |
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
else: | |
batch_inds = latent["batch_index"] if "batch_index" in latent else None | |
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = latent["noise_mask"] | |
previewer = get_previewer(device, model.model.latent_format) | |
pbar = comfy.utils.ProgressBar(steps) | |
def callback(step, x0, x, total_steps): | |
if previewer and step % 3 == 0: | |
previewer.preview(x0, step, total_steps) | |
pbar.update_absolute(step + 1, total_steps, None) | |
sigmas = None | |
disable_pbar = False | |
if noise_mask is not None: | |
noise_mask = prepare_mask(noise_mask, noise.shape, device) | |
comfy.model_management.load_model_gpu(model) | |
noise = noise.to(device) | |
latent_image = latent_image.to(device) | |
positive_copy = broadcast_cond(positive, noise.shape[0], device) | |
negative_copy = broadcast_cond(negative, noise.shape[0], device) | |
refiner_positive_copy = broadcast_cond(refiner_positive, noise.shape[0], device) | |
refiner_negative_copy = broadcast_cond(refiner_negative, noise.shape[0], device) | |
models = load_additional_models(positive, negative, model.model_dtype()) | |
sampler = KSamplerWithRefiner(model=model, refiner_model=refiner, steps=steps, device=device, | |
sampler=sampler_name, scheduler=scheduler, | |
denoise=denoise, model_options=model.model_options) | |
samples = sampler.sample(noise, positive_copy, negative_copy, refiner_positive=refiner_positive_copy, | |
refiner_negative=refiner_negative_copy, refiner_switch_step=refiner_switch_step, | |
cfg=cfg, latent_image=latent_image, | |
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, | |
denoise_mask=noise_mask, sigmas=sigmas, callback_function=callback, disable_pbar=disable_pbar, | |
seed=seed) | |
samples = samples.cpu() | |
cleanup_additional_models(models) | |
out = latent.copy() | |
out["samples"] = samples | |
return out | |
def image_to_numpy(x): | |
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] | |