Spaces:
Paused
Paused
| from comfy.samplers import * | |
| import comfy.model_management | |
| class KSamplerWithRefiner: | |
| SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] | |
| SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", | |
| "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", | |
| "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"] | |
| def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): | |
| self.model_patcher = model | |
| self.refiner_model_patcher = refiner_model | |
| self.model = model.model | |
| self.refiner_model = refiner_model.model | |
| self.model_denoise = CFGNoisePredictor(self.model) | |
| self.refiner_model_denoise = CFGNoisePredictor(self.refiner_model) | |
| if self.model.model_type == model_base.ModelType.V_PREDICTION: | |
| self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True) | |
| else: | |
| self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True) | |
| if self.refiner_model.model_type == model_base.ModelType.V_PREDICTION: | |
| self.refiner_model_wrap = CompVisVDenoiser(self.refiner_model_denoise, quantize=True) | |
| else: | |
| self.refiner_model_wrap = k_diffusion_external.CompVisDenoiser(self.refiner_model_denoise, quantize=True) | |
| self.model_k = KSamplerX0Inpaint(self.model_wrap) | |
| self.refiner_model_k = KSamplerX0Inpaint(self.refiner_model_wrap) | |
| self.device = device | |
| if scheduler not in self.SCHEDULERS: | |
| scheduler = self.SCHEDULERS[0] | |
| if sampler not in self.SAMPLERS: | |
| sampler = self.SAMPLERS[0] | |
| self.scheduler = scheduler | |
| self.sampler = sampler | |
| self.sigma_min = float(self.model_wrap.sigma_min) | |
| self.sigma_max = float(self.model_wrap.sigma_max) | |
| self.set_steps(steps, denoise) | |
| self.denoise = denoise | |
| self.model_options = model_options | |
| def calculate_sigmas(self, steps): | |
| sigmas = None | |
| discard_penultimate_sigma = False | |
| if self.sampler in ['dpm_2', 'dpm_2_ancestral']: | |
| steps += 1 | |
| discard_penultimate_sigma = True | |
| if self.scheduler == "karras": | |
| sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) | |
| elif self.scheduler == "exponential": | |
| sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, | |
| sigma_max=self.sigma_max) | |
| elif self.scheduler == "normal": | |
| sigmas = self.model_wrap.get_sigmas(steps) | |
| elif self.scheduler == "simple": | |
| sigmas = simple_scheduler(self.model_wrap, steps) | |
| elif self.scheduler == "ddim_uniform": | |
| sigmas = ddim_scheduler(self.model_wrap, steps) | |
| else: | |
| print("error invalid scheduler", self.scheduler) | |
| if discard_penultimate_sigma: | |
| sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) | |
| return sigmas | |
| def set_steps(self, steps, denoise=None): | |
| self.steps = steps | |
| if denoise is None or denoise > 0.9999: | |
| self.sigmas = self.calculate_sigmas(steps).to(self.device) | |
| else: | |
| new_steps = int(steps / denoise) | |
| sigmas = self.calculate_sigmas(new_steps).to(self.device) | |
| self.sigmas = sigmas[-(steps + 1):] | |
| def sample(self, noise, positive, negative, refiner_positive, refiner_negative, cfg, latent_image=None, | |
| start_step=None, last_step=None, refiner_switch_step=None, | |
| force_full_denoise=False, denoise_mask=None, sigmas=None, callback_function=None, disable_pbar=False, seed=None): | |
| if sigmas is None: | |
| sigmas = self.sigmas | |
| sigma_min = self.sigma_min | |
| if last_step is not None and last_step < (len(sigmas) - 1): | |
| sigma_min = sigmas[last_step] | |
| sigmas = sigmas[:last_step + 1] | |
| if force_full_denoise: | |
| sigmas[-1] = 0 | |
| if start_step is not None: | |
| if start_step < (len(sigmas) - 1): | |
| sigmas = sigmas[start_step:] | |
| else: | |
| if latent_image is not None: | |
| return latent_image | |
| else: | |
| return torch.zeros_like(noise) | |
| positive = positive[:] | |
| negative = negative[:] | |
| resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) | |
| resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) | |
| calculate_start_end_timesteps(self.model_wrap, negative) | |
| calculate_start_end_timesteps(self.model_wrap, positive) | |
| # make sure each cond area has an opposite one with the same area | |
| for c in positive: | |
| create_cond_with_same_area_if_none(negative, c) | |
| for c in negative: | |
| create_cond_with_same_area_if_none(positive, c) | |
| pre_run_control(self.model_wrap, negative + positive) | |
| apply_empty_x_to_equal_area( | |
| list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', | |
| lambda cond_cnets, x: cond_cnets[x]) | |
| apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) | |
| if self.model.is_adm(): | |
| positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, | |
| "positive") | |
| negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, | |
| "negative") | |
| refiner_positive = refiner_positive[:] | |
| refiner_negative = refiner_negative[:] | |
| resolve_cond_masks(refiner_positive, noise.shape[2], noise.shape[3], self.device) | |
| resolve_cond_masks(refiner_negative, noise.shape[2], noise.shape[3], self.device) | |
| calculate_start_end_timesteps(self.refiner_model_wrap, refiner_positive) | |
| calculate_start_end_timesteps(self.refiner_model_wrap, refiner_negative) | |
| # make sure each cond area has an opposite one with the same area | |
| for c in refiner_positive: | |
| create_cond_with_same_area_if_none(refiner_negative, c) | |
| for c in refiner_negative: | |
| create_cond_with_same_area_if_none(refiner_positive, c) | |
| if self.model.is_adm(): | |
| refiner_positive = encode_adm(self.refiner_model, refiner_positive, noise.shape[0], | |
| noise.shape[3], noise.shape[2], self.device, "positive") | |
| refiner_negative = encode_adm(self.refiner_model, refiner_negative, noise.shape[0], | |
| noise.shape[3], noise.shape[2], self.device, "negative") | |
| def refiner_switch(): | |
| comfy.model_management.load_model_gpu(self.refiner_model_patcher) | |
| self.model_denoise.inner_model = self.refiner_model_denoise.inner_model | |
| for i in range(len(positive)): | |
| positive[i] = refiner_positive[i] | |
| for i in range(len(negative)): | |
| negative[i] = refiner_negative[i] | |
| print('Refiner swapped.') | |
| return | |
| def callback(step, x0, x, total_steps): | |
| if step == refiner_switch_step: | |
| refiner_switch() | |
| if callback_function is not None: | |
| callback_function(step, x0, x, total_steps) | |
| if latent_image is not None: | |
| latent_image = self.model.process_latent_in(latent_image) | |
| extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": self.model_options, | |
| "seed": seed} | |
| cond_concat = None | |
| if hasattr(self.model, 'concat_keys'): # inpaint | |
| cond_concat = [] | |
| for ck in self.model.concat_keys: | |
| if denoise_mask is not None: | |
| if ck == "mask": | |
| cond_concat.append(denoise_mask[:, :1]) | |
| elif ck == "masked_image": | |
| cond_concat.append( | |
| latent_image) # NOTE: the latent_image should be masked by the mask in pixel space | |
| else: | |
| if ck == "mask": | |
| cond_concat.append(torch.ones_like(noise)[:, :1]) | |
| elif ck == "masked_image": | |
| cond_concat.append(blank_inpaint_image_like(noise)) | |
| extra_args["cond_concat"] = cond_concat | |
| if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0): | |
| max_denoise = False | |
| else: | |
| max_denoise = True | |
| if self.sampler == "uni_pc": | |
| samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, | |
| sampling_function=sampling_function, max_denoise=max_denoise, | |
| extra_args=extra_args, noise_mask=denoise_mask, callback=callback, | |
| disable=disable_pbar) | |
| elif self.sampler == "uni_pc_bh2": | |
| samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, | |
| sampling_function=sampling_function, max_denoise=max_denoise, | |
| extra_args=extra_args, noise_mask=denoise_mask, callback=callback, | |
| variant='bh2', disable=disable_pbar) | |
| elif self.sampler == "ddim": | |
| raise NotImplementedError('Swapped Refiner Does not support DDIM.') | |
| else: | |
| extra_args["denoise_mask"] = denoise_mask | |
| self.model_k.latent_image = latent_image | |
| self.model_k.noise = noise | |
| if max_denoise: | |
| noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) | |
| else: | |
| noise = noise * sigmas[0] | |
| k_callback = None | |
| total_steps = len(sigmas) - 1 | |
| if callback is not None: | |
| k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) | |
| if latent_image is not None: | |
| noise += latent_image | |
| if self.sampler == "dpm_fast": | |
| samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, | |
| extra_args=extra_args, callback=k_callback, | |
| disable=disable_pbar) | |
| elif self.sampler == "dpm_adaptive": | |
| samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], | |
| extra_args=extra_args, callback=k_callback, | |
| disable=disable_pbar) | |
| else: | |
| samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, | |
| extra_args=extra_args, | |
| callback=k_callback, | |
| disable=disable_pbar) | |
| return self.model.process_latent_out(samples.to(torch.float32)) | |