Osterkarten / entry.py
lllyasviel's picture
i
fbbf2aa
raw
history blame
4.89 kB
import os
import math
import einops
import numpy as np
import torch
import gc
import safetensors.torch
from omegaconf import OmegaConf
from sgm.util import instantiate_from_config
from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, device="cuda"):
# Hardcoded demo setups; might undergo some changes in the future
batch = {}
batch_uc = {}
for key in keys:
if key == "txt":
batch["txt"] = (
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
batch_uc["txt"] = (
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
elif key == "original_size_as_tuple":
batch["original_size_as_tuple"] = (
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
.to(device)
.repeat(*N, 1)
)
elif key == "crop_coords_top_left":
batch["crop_coords_top_left"] = (
torch.tensor(
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
)
.to(device)
.repeat(*N, 1)
)
elif key == "aesthetic_score":
batch["aesthetic_score"] = (
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
)
batch_uc["aesthetic_score"] = (
torch.tensor([value_dict["negative_aesthetic_score"]])
.to(device)
.repeat(*N, 1)
)
elif key == "target_size_as_tuple":
batch["target_size_as_tuple"] = (
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
.to(device)
.repeat(*N, 1)
)
else:
batch[key] = value_dict[key]
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
sampler = EulerAncestralSampler(
num_steps=40,
discretization_config={
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
},
guider_config={
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
"params": {"scale": 9.0, "dyn_thresh_config": {
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
}},
},
eta=1.0,
s_noise=1.0,
verbose=True,
)
config_path = './sd_xl_base.yaml'
config = OmegaConf.load(config_path)
model = instantiate_from_config(config.model).cpu()
model.eval()
model.load_state_dict(safetensors.torch.load_file('./sd_xl_base_1.0.safetensors'), strict=False)
# model.conditioner.cuda()
with torch.no_grad():
model.conditioner.embedders[0].device = 'cpu'
model.conditioner.embedders[1].device = 'cpu'
value_dict = {
"prompt": "a handsome man in forest", "negative_prompt": "ugly, bad", "orig_height": 1024, "orig_width": 1024,
"crop_coords_top": 0, "crop_coords_left": 0, "target_height": 1024, "target_width": 1024, "aesthetic_score": 7.5,
"negative_aesthetic_score": 2.0,
}
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1],
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc)
# model.conditioner.cpu()
c = {a: b.to(torch.float16) for a, b in c.items()}
uc = {a: b.to(torch.float16) for a, b in uc.items()}
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
shape = (1, 4, 128, 128)
randn = torch.randn(shape).to(torch.float16).cuda()
def denoiser(input, sigma, c):
return model.denoiser(model.model, input, sigma, c)
with torch.no_grad():
model.model.to(torch.float16).cuda()
model.denoiser.to(torch.float16).cuda()
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
model.model.cpu()
model.denoiser.cpu()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
with torch.no_grad():
model.first_stage_model.cuda()
samples_x = model.decode_first_stage(samples_z.float())
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
model.first_stage_model.cpu()
import cv2
samples = einops.rearrange(samples, 'b c h w -> b h w c')[0, :, :, ::-1] * 255.0
samples = samples.cpu().numpy().clip(0, 255).astype(np.uint8)
cv2.imwrite('img.png', samples)