Spaces:
Paused
Paused
import os | |
import torch | |
import modules.core as core | |
from modules.path import modelfile_path | |
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') | |
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') | |
xl_base = core.load_model(xl_base_filename) | |
xl_refiner = core.load_model(xl_refiner_filename) | |
del xl_base.vae | |
def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_size=1): | |
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) | |
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) | |
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) | |
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) | |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size) | |
sampled_latent = core.ksampler_with_refiner( | |
model=xl_base.unet, | |
positive=positive_conditions, | |
negative=negative_conditions, | |
refiner=xl_refiner, | |
refiner_positive=positive_conditions_refiner, | |
refiner_negative=negative_conditions_refiner, | |
refiner_switch_step=20, | |
latent=empty_latent, | |
steps=30, start_step=0, last_step=30, disable_noise=False, force_full_denoise=True | |
) | |
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent) | |
images = core.image_to_numpy(decoded_latent) | |
core.close_all_preview() | |
return images | |