Spaces:
Paused
Paused
import threading | |
buffer = [] | |
outputs = [] | |
def worker(): | |
global buffer, outputs | |
import time | |
import shared | |
import random | |
import modules.default_pipeline as pipeline | |
import modules.path | |
import modules.patch | |
from modules.sdxl_styles import apply_style, aspect_ratios | |
from modules.private_logger import log | |
try: | |
async_gradio_app = shared.gradio_root | |
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' | |
if async_gradio_app.share: | |
flag += f''' or {async_gradio_app.share_url}''' | |
print(flag) | |
except Exception as e: | |
print(e) | |
def handler(task): | |
prompt, negative_prompt, style_selction, performance_selction, \ | |
aspect_ratios_selction, image_number, image_seed, sharpness, base_model_name, refiner_model_name, \ | |
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5 = task | |
loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)] | |
modules.patch.sharpness = sharpness | |
pipeline.refresh_base_model(base_model_name) | |
pipeline.refresh_refiner_model(refiner_model_name) | |
pipeline.refresh_loras(loras) | |
pipeline.clean_prompt_cond_caches() | |
p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt) | |
if performance_selction == 'Speed': | |
steps = 30 | |
switch = 20 | |
else: | |
steps = 60 | |
switch = 40 | |
width, height = aspect_ratios[aspect_ratios_selction] | |
results = [] | |
seed = image_seed | |
max_seed = int(1024*1024*1024) | |
if not isinstance(seed, int): | |
seed = random.randint(1, max_seed) | |
if seed < 0: | |
seed = - seed | |
seed = seed % max_seed | |
all_steps = steps * image_number | |
def callback(step, x0, x, total_steps, y): | |
done_steps = i * steps + step | |
outputs.append(['preview', ( | |
int(100.0 * float(done_steps) / float(all_steps)), | |
f'Step {step}/{total_steps} in the {i}-th Sampling', | |
y)]) | |
for i in range(image_number): | |
imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback) | |
for x in imgs: | |
d = [ | |
('Prompt', prompt), | |
('Negative Prompt', negative_prompt), | |
('Style', style_selction), | |
('Performance', performance_selction), | |
('Resolution', str((width, height))), | |
('Sharpness', sharpness), | |
('Base Model', base_model_name), | |
('Refiner Model', refiner_model_name), | |
('Seed', seed) | |
] | |
for n, w in loras: | |
if n != 'None': | |
d.append((f'LoRA [{n}] weight', w)) | |
log(x, d) | |
seed += 1 | |
results += imgs | |
outputs.append(['results', results]) | |
return | |
while True: | |
time.sleep(0.01) | |
if len(buffer) > 0: | |
task = buffer.pop(0) | |
handler(task) | |
pass | |
threading.Thread(target=worker, daemon=True).start() | |