Spaces:
Paused
Paused
| import os | |
| import torch | |
| import modules.core as core | |
| from modules.path import modelfile_path | |
| xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') | |
| xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') | |
| xl_base = core.load_model(xl_base_filename) | |
| xl_refiner = core.load_model(xl_refiner_filename) | |
| del xl_base.vae | |
| def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_size=1): | |
| positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) | |
| negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) | |
| positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) | |
| negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) | |
| empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size) | |
| sampled_latent = core.ksampler_with_refiner( | |
| model=xl_base.unet, | |
| positive=positive_conditions, | |
| negative=negative_conditions, | |
| refiner=xl_refiner.unet, | |
| refiner_positive=positive_conditions_refiner, | |
| refiner_negative=negative_conditions_refiner, | |
| refiner_switch_step=20, | |
| latent=empty_latent, | |
| steps=30, start_step=0, last_step=30, disable_noise=False, force_full_denoise=True, | |
| seed=12345 | |
| ) | |
| decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent) | |
| images = core.image_to_numpy(decoded_latent) | |
| core.close_all_preview() | |
| return images | |