Spaces:
Paused
Paused
import torch | |
Tensor = torch.Tensor | |
Device = torch.DeviceObjType | |
Dtype = torch.Type | |
pad = torch.nn.functional.pad | |
def _compute_zero_padding(kernel_size: tuple[int, int] | int) -> tuple[int, int]: | |
ky, kx = _unpack_2d_ks(kernel_size) | |
return (ky - 1) // 2, (kx - 1) // 2 | |
def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]: | |
if isinstance(kernel_size, int): | |
ky = kx = kernel_size | |
else: | |
assert len(kernel_size) == 2, '2D Kernel size should have a length of 2.' | |
ky, kx = kernel_size | |
ky = int(ky) | |
kx = int(kx) | |
return ky, kx | |
def gaussian( | |
window_size: int, sigma: Tensor | float, *, device: Device | None = None, dtype: Dtype | None = None | |
) -> Tensor: | |
batch_size = sigma.shape[0] | |
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) | |
if window_size % 2 == 0: | |
x = x + 0.5 | |
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) | |
return gauss / gauss.sum(-1, keepdim=True) | |
def get_gaussian_kernel1d( | |
kernel_size: int, | |
sigma: float | Tensor, | |
force_even: bool = False, | |
*, | |
device: Device | None = None, | |
dtype: Dtype | None = None, | |
) -> Tensor: | |
return gaussian(kernel_size, sigma, device=device, dtype=dtype) | |
def get_gaussian_kernel2d( | |
kernel_size: tuple[int, int] | int, | |
sigma: tuple[float, float] | Tensor, | |
force_even: bool = False, | |
*, | |
device: Device | None = None, | |
dtype: Dtype | None = None, | |
) -> Tensor: | |
sigma = torch.Tensor([[sigma, sigma]]).to(device=device, dtype=dtype) | |
ksize_y, ksize_x = _unpack_2d_ks(kernel_size) | |
sigma_y, sigma_x = sigma[:, 0, None], sigma[:, 1, None] | |
kernel_y = get_gaussian_kernel1d(ksize_y, sigma_y, force_even, device=device, dtype=dtype)[..., None] | |
kernel_x = get_gaussian_kernel1d(ksize_x, sigma_x, force_even, device=device, dtype=dtype)[..., None] | |
return kernel_y * kernel_x.view(-1, 1, ksize_x) | |
def _bilateral_blur( | |
input: Tensor, | |
guidance: Tensor | None, | |
kernel_size: tuple[int, int] | int, | |
sigma_color: float | Tensor, | |
sigma_space: tuple[float, float] | Tensor, | |
border_type: str = 'reflect', | |
color_distance_type: str = 'l1', | |
) -> Tensor: | |
if isinstance(sigma_color, Tensor): | |
sigma_color = sigma_color.to(device=input.device, dtype=input.dtype).view(-1, 1, 1, 1, 1) | |
ky, kx = _unpack_2d_ks(kernel_size) | |
pad_y, pad_x = _compute_zero_padding(kernel_size) | |
padded_input = pad(input, (pad_x, pad_x, pad_y, pad_y), mode=border_type) | |
unfolded_input = padded_input.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) # (B, C, H, W, Ky x Kx) | |
if guidance is None: | |
guidance = input | |
unfolded_guidance = unfolded_input | |
else: | |
padded_guidance = pad(guidance, (pad_x, pad_x, pad_y, pad_y), mode=border_type) | |
unfolded_guidance = padded_guidance.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) # (B, C, H, W, Ky x Kx) | |
diff = unfolded_guidance - guidance.unsqueeze(-1) | |
if color_distance_type == "l1": | |
color_distance_sq = diff.abs().sum(1, keepdim=True).square() | |
elif color_distance_type == "l2": | |
color_distance_sq = diff.square().sum(1, keepdim=True) | |
else: | |
raise ValueError("color_distance_type only acceps l1 or l2") | |
color_kernel = (-0.5 / sigma_color**2 * color_distance_sq).exp() # (B, 1, H, W, Ky x Kx) | |
space_kernel = get_gaussian_kernel2d(kernel_size, sigma_space, device=input.device, dtype=input.dtype) | |
space_kernel = space_kernel.view(-1, 1, 1, 1, kx * ky) | |
kernel = space_kernel * color_kernel | |
out = (unfolded_input * kernel).sum(-1) / kernel.sum(-1) | |
return out | |
def bilateral_blur( | |
input: Tensor, | |
kernel_size: tuple[int, int] | int = (13, 13), | |
sigma_color: float | Tensor = 3.0, | |
sigma_space: tuple[float, float] | Tensor = 3.0, | |
border_type: str = 'reflect', | |
color_distance_type: str = 'l1', | |
) -> Tensor: | |
return _bilateral_blur(input, None, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) | |
def joint_bilateral_blur( | |
input: Tensor, | |
guidance: Tensor, | |
kernel_size: tuple[int, int] | int, | |
sigma_color: float | Tensor, | |
sigma_space: tuple[float, float] | Tensor, | |
border_type: str = 'reflect', | |
color_distance_type: str = 'l1', | |
) -> Tensor: | |
return _bilateral_blur(input, guidance, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) | |
class _BilateralBlur(torch.nn.Module): | |
def __init__( | |
self, | |
kernel_size: tuple[int, int] | int, | |
sigma_color: float | Tensor, | |
sigma_space: tuple[float, float] | Tensor, | |
border_type: str = 'reflect', | |
color_distance_type: str = "l1", | |
) -> None: | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.sigma_color = sigma_color | |
self.sigma_space = sigma_space | |
self.border_type = border_type | |
self.color_distance_type = color_distance_type | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}" | |
f"(kernel_size={self.kernel_size}, " | |
f"sigma_color={self.sigma_color}, " | |
f"sigma_space={self.sigma_space}, " | |
f"border_type={self.border_type}, " | |
f"color_distance_type={self.color_distance_type})" | |
) | |
class BilateralBlur(_BilateralBlur): | |
def forward(self, input: Tensor) -> Tensor: | |
return bilateral_blur( | |
input, self.kernel_size, self.sigma_color, self.sigma_space, self.border_type, self.color_distance_type | |
) | |
class JointBilateralBlur(_BilateralBlur): | |
def forward(self, input: Tensor, guidance: Tensor) -> Tensor: | |
return joint_bilateral_blur( | |
input, | |
guidance, | |
self.kernel_size, | |
self.sigma_color, | |
self.sigma_space, | |
self.border_type, | |
self.color_distance_type, | |
) | |