Spaces:
Paused
Paused
import os | |
import math | |
import einops | |
import numpy as np | |
import torch | |
import gc | |
import safetensors.torch | |
from omegaconf import OmegaConf | |
from sgm.util import instantiate_from_config | |
from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler | |
def get_unique_embedder_keys_from_conditioner(conditioner): | |
return list(set([x.input_key for x in conditioner.embedders])) | |
def get_batch(keys, value_dict, N, device="cuda"): | |
# Hardcoded demo setups; might undergo some changes in the future | |
batch = {} | |
batch_uc = {} | |
for key in keys: | |
if key == "txt": | |
batch["txt"] = ( | |
np.repeat([value_dict["prompt"]], repeats=math.prod(N)) | |
.reshape(N) | |
.tolist() | |
) | |
batch_uc["txt"] = ( | |
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N)) | |
.reshape(N) | |
.tolist() | |
) | |
elif key == "original_size_as_tuple": | |
batch["original_size_as_tuple"] = ( | |
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
# batch_uc["original_size_as_tuple"] = ( | |
# torch.tensor([value_dict["orig_height"], value_dict["orig_width"]]) | |
# .to(device) | |
# .repeat(*N, 1) / 2 | |
# ) | |
elif key == "crop_coords_top_left": | |
batch["crop_coords_top_left"] = ( | |
torch.tensor( | |
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]] | |
) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
elif key == "aesthetic_score": | |
batch["aesthetic_score"] = ( | |
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1) | |
) | |
batch_uc["aesthetic_score"] = ( | |
torch.tensor([value_dict["negative_aesthetic_score"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
elif key == "target_size_as_tuple": | |
batch["target_size_as_tuple"] = ( | |
torch.tensor([value_dict["target_height"], value_dict["target_width"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
# batch_uc["target_size_as_tuple"] = ( | |
# torch.tensor([value_dict["target_height"], value_dict["target_width"]]) | |
# .to(device) | |
# .repeat(*N, 1) / 2.0 | |
# ) | |
else: | |
batch[key] = value_dict[key] | |
for key in batch.keys(): | |
if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
batch_uc[key] = torch.clone(batch[key]) | |
return batch, batch_uc | |
sampler = EulerAncestralSampler( | |
num_steps=40, | |
discretization_config={ | |
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization", | |
}, | |
guider_config={ | |
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG", | |
"params": {"scale": 9.0, "dyn_thresh_config": { | |
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding" | |
}}, | |
}, | |
eta=1.0, | |
s_noise=1.0, | |
verbose=True, | |
) | |
torch.manual_seed(12345) | |
config_path = './sd_xl_base.yaml' | |
config = OmegaConf.load(config_path) | |
model = instantiate_from_config(config.model).cpu() | |
model.eval() | |
model.load_state_dict(safetensors.torch.load_file('./sd_xl_base_1.0.safetensors'), strict=False) | |
# model.conditioner.cuda() | |
with torch.no_grad(): | |
model.conditioner.embedders[0].device = 'cpu' | |
model.conditioner.embedders[1].device = 'cpu' | |
value_dict = { | |
"prompt": "a handsome in forest", "negative_prompt": "ugly, bad", "orig_height": 1024, "orig_width": 1024, | |
"crop_coords_top": 0, "crop_coords_left": 0, "target_height": 1024, "target_width": 1024, "aesthetic_score": 7.5, | |
"negative_aesthetic_score": 2.0, | |
} | |
batch, batch_uc = get_batch( | |
get_unique_embedder_keys_from_conditioner(model.conditioner), | |
value_dict, | |
[1], | |
) | |
c, uc = model.conditioner.get_unconditional_conditioning( | |
batch, | |
batch_uc=batch_uc) | |
# model.conditioner.cpu() | |
c = {a: b.to(torch.float16) for a, b in c.items()} | |
uc = {a: b.to(torch.float16) for a, b in uc.items()} | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
shape = (1, 4, 128, 128) | |
randn = torch.randn(shape).to(torch.float16).cuda() | |
def denoiser(input, sigma, c): | |
return model.denoiser(model.model, input, sigma, c) | |
with torch.no_grad(): | |
model.model.to(torch.float16).cuda() | |
model.denoiser.to(torch.float16).cuda() | |
samples_z = sampler(denoiser, randn, cond=c, uc=uc) | |
model.model.cpu() | |
model.denoiser.cpu() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
with torch.no_grad(): | |
model.first_stage_model.cuda() | |
samples_x = model.decode_first_stage(samples_z.float()) | |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | |
model.first_stage_model.cpu() | |
import cv2 | |
samples = einops.rearrange(samples, 'b c h w -> b h w c')[0] * 255.0 | |
samples = samples.cpu().numpy().clip(0, 255).astype(np.uint8)[:, :, ::-1] | |
cv2.imwrite('img.png', samples) | |