lllyasviel commited on
Commit
01497eb
·
1 Parent(s): e848396
Files changed (2) hide show
  1. modules/default_pipeline.py +6 -6
  2. webui.py +24 -7
modules/default_pipeline.py CHANGED
@@ -18,14 +18,14 @@ xl_refiner = core.load_model(xl_refiner_filename)
18
 
19
 
20
  @torch.no_grad()
21
- def process(positive_prompt, negative_prompt, width=1280, height=960, batch_size=1):
22
  positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
23
  negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
24
 
25
  positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
26
  negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
27
 
28
- empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
29
 
30
  sampled_latent = core.ksampler_with_refiner(
31
  model=xl_base.unet,
@@ -34,10 +34,10 @@ def process(positive_prompt, negative_prompt, width=1280, height=960, batch_size
34
  refiner=xl_refiner.unet,
35
  refiner_positive=positive_conditions_refiner,
36
  refiner_negative=negative_conditions_refiner,
37
- refiner_switch_step=20,
38
  latent=empty_latent,
39
- steps=30, start_step=0, last_step=30, disable_noise=False, force_full_denoise=True,
40
- seed=123456
41
  )
42
 
43
  decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
@@ -46,4 +46,4 @@ def process(positive_prompt, negative_prompt, width=1280, height=960, batch_size
46
 
47
  close_all_preview()
48
 
49
- return images * 2
 
18
 
19
 
20
  @torch.no_grad()
21
+ def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed):
22
  positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
23
  negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
24
 
25
  positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
26
  negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
27
 
28
+ empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
29
 
30
  sampled_latent = core.ksampler_with_refiner(
31
  model=xl_base.unet,
 
34
  refiner=xl_refiner.unet,
35
  refiner_positive=positive_conditions_refiner,
36
  refiner_negative=negative_conditions_refiner,
37
+ refiner_switch_step=switch,
38
  latent=empty_latent,
39
+ steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
40
+ seed=image_seed
41
  )
42
 
43
  decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
 
46
 
47
  close_all_preview()
48
 
49
+ return images
webui.py CHANGED
@@ -1,18 +1,35 @@
1
  import gradio as gr
 
2
 
3
  from modules.sdxl_styles import apply_style, style_keys, aspect_ratios
4
- # from modules.default_pipeline import process
5
 
6
 
7
- def generate_clicked(positive_prompt):
 
8
 
9
- p, n = apply_style('cinematic-default', positive_prompt, '')
10
 
11
- print(p)
12
- print(n)
 
 
 
 
13
 
14
- return process(positive_prompt=p,
15
- negative_prompt=n)
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
  block = gr.Blocks()
 
1
  import gradio as gr
2
+ import random
3
 
4
  from modules.sdxl_styles import apply_style, style_keys, aspect_ratios
5
+ from modules.default_pipeline import process
6
 
7
 
8
+ def generate_clicked(prompt, negative_prompt, style_selction, performance_selction,
9
+ aspect_ratios_selction, image_number, image_seed):
10
 
11
+ p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt)
12
 
13
+ if performance_selction == 'Speed':
14
+ steps = 30
15
+ switch = 20
16
+ else:
17
+ steps = 60
18
+ switch = 40
19
 
20
+ width, height = aspect_ratios[aspect_ratios_selction]
21
+
22
+ results = []
23
+ seed = image_seed
24
+ if not isinstance(seed, int) or seed < 0 or seed > 65535:
25
+ seed = random.randint(1, 65535)
26
+
27
+ for i in range(image_number):
28
+ imgs = process(p_txt, n_txt, steps, switch, width, height, seed)
29
+ seed += 1
30
+ results += imgs
31
+
32
+ return results
33
 
34
 
35
  block = gr.Blocks()