Spaces:
Paused
Paused
lllyasviel
commited on
Commit
·
5afc367
1
Parent(s):
3850303
- modules/core.py +2 -2
- modules/samplers_advanced.py +200 -0
modules/core.py
CHANGED
@@ -11,7 +11,7 @@ import comfy.utils
|
|
11 |
from comfy.sd import load_checkpoint_guess_config
|
12 |
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
|
13 |
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
|
14 |
-
from
|
15 |
|
16 |
|
17 |
opCLIPTextEncode = CLIPTextEncode()
|
@@ -123,7 +123,7 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sa
|
|
123 |
|
124 |
models = load_additional_models(positive, negative, model.model_dtype())
|
125 |
|
126 |
-
sampler =
|
127 |
denoise=denoise, model_options=model.model_options)
|
128 |
|
129 |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
|
|
11 |
from comfy.sd import load_checkpoint_guess_config
|
12 |
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
|
13 |
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
|
14 |
+
from modules.samplers_advanced import KSamplerAdvanced
|
15 |
|
16 |
|
17 |
opCLIPTextEncode = CLIPTextEncode()
|
|
|
123 |
|
124 |
models = load_additional_models(positive, negative, model.model_dtype())
|
125 |
|
126 |
+
sampler = KSamplerAdvanced(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
|
127 |
denoise=denoise, model_options=model.model_options)
|
128 |
|
129 |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
modules/samplers_advanced.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from comfy.samplers import *
|
2 |
+
|
3 |
+
|
4 |
+
class KSamplerAdvanced:
|
5 |
+
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
6 |
+
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
7 |
+
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
8 |
+
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
9 |
+
|
10 |
+
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
11 |
+
self.model = model
|
12 |
+
self.model_denoise = CFGNoisePredictor(self.model)
|
13 |
+
if self.model.model_type == model_base.ModelType.V_PREDICTION:
|
14 |
+
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
|
15 |
+
else:
|
16 |
+
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
|
17 |
+
|
18 |
+
self.model_k = KSamplerX0Inpaint(self.model_wrap)
|
19 |
+
self.device = device
|
20 |
+
if scheduler not in self.SCHEDULERS:
|
21 |
+
scheduler = self.SCHEDULERS[0]
|
22 |
+
if sampler not in self.SAMPLERS:
|
23 |
+
sampler = self.SAMPLERS[0]
|
24 |
+
self.scheduler = scheduler
|
25 |
+
self.sampler = sampler
|
26 |
+
self.sigma_min=float(self.model_wrap.sigma_min)
|
27 |
+
self.sigma_max=float(self.model_wrap.sigma_max)
|
28 |
+
self.set_steps(steps, denoise)
|
29 |
+
self.denoise = denoise
|
30 |
+
self.model_options = model_options
|
31 |
+
|
32 |
+
def calculate_sigmas(self, steps):
|
33 |
+
sigmas = None
|
34 |
+
|
35 |
+
discard_penultimate_sigma = False
|
36 |
+
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
|
37 |
+
steps += 1
|
38 |
+
discard_penultimate_sigma = True
|
39 |
+
|
40 |
+
if self.scheduler == "karras":
|
41 |
+
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
42 |
+
elif self.scheduler == "exponential":
|
43 |
+
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
44 |
+
elif self.scheduler == "normal":
|
45 |
+
sigmas = self.model_wrap.get_sigmas(steps)
|
46 |
+
elif self.scheduler == "simple":
|
47 |
+
sigmas = simple_scheduler(self.model_wrap, steps)
|
48 |
+
elif self.scheduler == "ddim_uniform":
|
49 |
+
sigmas = ddim_scheduler(self.model_wrap, steps)
|
50 |
+
else:
|
51 |
+
print("error invalid scheduler", self.scheduler)
|
52 |
+
|
53 |
+
if discard_penultimate_sigma:
|
54 |
+
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
55 |
+
return sigmas
|
56 |
+
|
57 |
+
def set_steps(self, steps, denoise=None):
|
58 |
+
self.steps = steps
|
59 |
+
if denoise is None or denoise > 0.9999:
|
60 |
+
self.sigmas = self.calculate_sigmas(steps).to(self.device)
|
61 |
+
else:
|
62 |
+
new_steps = int(steps/denoise)
|
63 |
+
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
64 |
+
self.sigmas = sigmas[-(steps + 1):]
|
65 |
+
|
66 |
+
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
67 |
+
if sigmas is None:
|
68 |
+
sigmas = self.sigmas
|
69 |
+
sigma_min = self.sigma_min
|
70 |
+
|
71 |
+
if last_step is not None and last_step < (len(sigmas) - 1):
|
72 |
+
sigma_min = sigmas[last_step]
|
73 |
+
sigmas = sigmas[:last_step + 1]
|
74 |
+
if force_full_denoise:
|
75 |
+
sigmas[-1] = 0
|
76 |
+
|
77 |
+
if start_step is not None:
|
78 |
+
if start_step < (len(sigmas) - 1):
|
79 |
+
sigmas = sigmas[start_step:]
|
80 |
+
else:
|
81 |
+
if latent_image is not None:
|
82 |
+
return latent_image
|
83 |
+
else:
|
84 |
+
return torch.zeros_like(noise)
|
85 |
+
|
86 |
+
positive = positive[:]
|
87 |
+
negative = negative[:]
|
88 |
+
|
89 |
+
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
|
90 |
+
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
|
91 |
+
|
92 |
+
calculate_start_end_timesteps(self.model_wrap, negative)
|
93 |
+
calculate_start_end_timesteps(self.model_wrap, positive)
|
94 |
+
|
95 |
+
#make sure each cond area has an opposite one with the same area
|
96 |
+
for c in positive:
|
97 |
+
create_cond_with_same_area_if_none(negative, c)
|
98 |
+
for c in negative:
|
99 |
+
create_cond_with_same_area_if_none(positive, c)
|
100 |
+
|
101 |
+
pre_run_control(self.model_wrap, negative + positive)
|
102 |
+
|
103 |
+
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
104 |
+
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
105 |
+
|
106 |
+
if self.model.is_adm():
|
107 |
+
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
|
108 |
+
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
|
109 |
+
|
110 |
+
if latent_image is not None:
|
111 |
+
latent_image = self.model.process_latent_in(latent_image)
|
112 |
+
|
113 |
+
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
|
114 |
+
|
115 |
+
cond_concat = None
|
116 |
+
if hasattr(self.model, 'concat_keys'): #inpaint
|
117 |
+
cond_concat = []
|
118 |
+
for ck in self.model.concat_keys:
|
119 |
+
if denoise_mask is not None:
|
120 |
+
if ck == "mask":
|
121 |
+
cond_concat.append(denoise_mask[:,:1])
|
122 |
+
elif ck == "masked_image":
|
123 |
+
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
|
124 |
+
else:
|
125 |
+
if ck == "mask":
|
126 |
+
cond_concat.append(torch.ones_like(noise)[:,:1])
|
127 |
+
elif ck == "masked_image":
|
128 |
+
cond_concat.append(blank_inpaint_image_like(noise))
|
129 |
+
extra_args["cond_concat"] = cond_concat
|
130 |
+
|
131 |
+
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
|
132 |
+
max_denoise = False
|
133 |
+
else:
|
134 |
+
max_denoise = True
|
135 |
+
|
136 |
+
|
137 |
+
if self.sampler == "uni_pc":
|
138 |
+
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
|
139 |
+
elif self.sampler == "uni_pc_bh2":
|
140 |
+
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
|
141 |
+
elif self.sampler == "ddim":
|
142 |
+
timesteps = []
|
143 |
+
for s in range(sigmas.shape[0]):
|
144 |
+
timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
|
145 |
+
noise_mask = None
|
146 |
+
if denoise_mask is not None:
|
147 |
+
noise_mask = 1.0 - denoise_mask
|
148 |
+
|
149 |
+
ddim_callback = None
|
150 |
+
if callback is not None:
|
151 |
+
total_steps = len(timesteps) - 1
|
152 |
+
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
|
153 |
+
|
154 |
+
sampler = DDIMSampler(self.model, device=self.device)
|
155 |
+
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
156 |
+
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
|
157 |
+
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
|
158 |
+
conditioning=positive,
|
159 |
+
batch_size=noise.shape[0],
|
160 |
+
shape=noise.shape[1:],
|
161 |
+
verbose=False,
|
162 |
+
unconditional_guidance_scale=cfg,
|
163 |
+
unconditional_conditioning=negative,
|
164 |
+
eta=0.0,
|
165 |
+
x_T=z_enc,
|
166 |
+
x0=latent_image,
|
167 |
+
img_callback=ddim_callback,
|
168 |
+
denoise_function=self.model_wrap.predict_eps_discrete_timestep,
|
169 |
+
extra_args=extra_args,
|
170 |
+
mask=noise_mask,
|
171 |
+
to_zero=sigmas[-1]==0,
|
172 |
+
end_step=sigmas.shape[0] - 1,
|
173 |
+
disable_pbar=disable_pbar)
|
174 |
+
|
175 |
+
else:
|
176 |
+
extra_args["denoise_mask"] = denoise_mask
|
177 |
+
self.model_k.latent_image = latent_image
|
178 |
+
self.model_k.noise = noise
|
179 |
+
|
180 |
+
if max_denoise:
|
181 |
+
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
182 |
+
else:
|
183 |
+
noise = noise * sigmas[0]
|
184 |
+
|
185 |
+
k_callback = None
|
186 |
+
total_steps = len(sigmas) - 1
|
187 |
+
if callback is not None:
|
188 |
+
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
189 |
+
|
190 |
+
if latent_image is not None:
|
191 |
+
noise += latent_image
|
192 |
+
if self.sampler == "dpm_fast":
|
193 |
+
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
194 |
+
elif self.sampler == "dpm_adaptive":
|
195 |
+
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
196 |
+
else:
|
197 |
+
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
198 |
+
|
199 |
+
return self.model.process_latent_out(samples.to(torch.float32))
|
200 |
+
|