import threading buffer = [] outputs = [] is_working = False def worker(): global buffer, outputs, is_working import time import shared import random import modules.default_pipeline as pipeline import modules.path import modules.patch from modules.sdxl_styles import apply_style, aspect_ratios from modules.private_logger import log try: async_gradio_app = shared.gradio_root flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' if async_gradio_app.share: flag += f''' or {async_gradio_app.share_url}''' print(flag) except Exception as e: print(e) def handler(task): prompt, style_selection = task steps = 30 switch = 20 aspect_ratios_selection = '1280×768' seed = random.randint(1, int(1024*1024*1024)) sharpness = 10.0 loras=[(modules.path.default_lora_name, modules.path.default_lora_weight), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)] modules.patch.sharpness = sharpness pipeline.refresh_base_model(modules.path.default_base_model_name) pipeline.refresh_refiner_model(modules.path.default_refiner_model_name) pipeline.refresh_loras(loras) pipeline.clean_prompt_cond_caches() p_txt, n_txt = apply_style(style_selection, prompt) width, height = aspect_ratios[aspect_ratios_selection] results = [] def callback(step, x0, x, total_steps, y): done_steps = step outputs.append(['preview', ( int(100.0 * float(done_steps) / float(steps)), f'{step}/{total_steps}', y)]) img = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback) for x in img: d = [ ('Prompt', prompt), ('Style', style_selection), ('Seed', seed) ] for n, w in loras: if n != 'None': d.append((f'LoRA [{n}] weight', w)) log(x, d) outputs.append(['results', img]) return while True: time.sleep(0.01) if len(buffer) > 0: is_working=True task = buffer.pop(0) handler(task) is_working=False pass threading.Thread(target=worker, daemon=True).start()