import random import torch import numpy as np from comfy.sd import load_checkpoint_guess_config from nodes import VAEDecode, KSamplerAdvanced, EmptyLatentImage, CLIPTextEncode opCLIPTextEncode = CLIPTextEncode() opEmptyLatentImage = EmptyLatentImage() opKSamplerAdvanced = KSamplerAdvanced() opVAEDecode = VAEDecode() class StableDiffusionModel: def __init__(self, unet, vae, clip, clip_vision): self.unet = unet self.vae = vae self.clip = clip self.clip_vision = clip_vision @torch.no_grad() def load_model(ckpt_filename): unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename) return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision) @torch.no_grad() def encode_prompt_condition(clip, prompt): return opCLIPTextEncode.encode(clip=clip, text=prompt)[0] @torch.no_grad() def decode_vae(vae, latent_image): return opVAEDecode.decode(samples=latent_image, vae=vae)[0] @torch.no_grad() def ksample(model, positive_condition, negative_condition, latent_image, add_noise=True, noise_seed=None, steps=25, cfg=9, sampler_name='euler_ancestral', scheduler='normal', start_at_step=None, end_at_step=None, return_with_leftover_noise=False): return opKSamplerAdvanced.sample( add_noise='enable' if add_noise else 'disable', noise_seed=noise_seed if isinstance(noise_seed, int) else random.randint(1, 2 ** 64), steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, start_at_step=0 if start_at_step is None else start_at_step, end_at_step=steps if end_at_step is None else end_at_step, return_with_leftover_noise='enable' if return_with_leftover_noise else 'disable', model=model, positive=positive_condition, negative=negative_condition, latent_image=latent_image, )[0] @torch.no_grad() def image_to_numpy(x): return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]