import os import random import cv2 import einops import torch import numpy as np import comfy.model_management import comfy.utils from comfy.sd import load_checkpoint_guess_config from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models from modules.samplers_advanced import KSampler, KSamplerWithRefiner from modules.adm_patch import patch_negative_adm patch_negative_adm() opCLIPTextEncode = CLIPTextEncode() opEmptyLatentImage = EmptyLatentImage() opVAEDecode = VAEDecode() class StableDiffusionModel: def __init__(self, unet, vae, clip, clip_vision): self.unet = unet self.vae = vae self.clip = clip self.clip_vision = clip_vision @torch.no_grad() def load_model(ckpt_filename): unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename) return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision) @torch.no_grad() def encode_prompt_condition(clip, prompt): return opCLIPTextEncode.encode(clip=clip, text=prompt)[0] @torch.no_grad() def generate_empty_latent(width=1024, height=1024, batch_size=1): return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0] @torch.no_grad() def decode_vae(vae, latent_image): return opVAEDecode.decode(samples=latent_image, vae=vae)[0] def get_previewer(device, latent_format): from latent_preview import TAESD, TAESDPreviewerImpl taesd_decoder_path = os.path.abspath(os.path.realpath(os.path.join("models", "vae_approx", latent_format.taesd_decoder_name))) if not os.path.exists(taesd_decoder_path): print(f"Warning: TAESD previews enabled, but could not find {taesd_decoder_path}") return None taesd = TAESD(None, taesd_decoder_path).to(device) def preview_function(x0, step, total_steps): with torch.no_grad(): x_sample = taesd.decoder(x0).detach() * 255.0 x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c') x_sample = x_sample.cpu().numpy()[..., ::-1].copy().clip(0, 255).astype(np.uint8) for i, s in enumerate(x_sample): flag = f'OpenCV Diffusion Preview {i}' cv2.imshow(flag, s) cv2.setWindowTitle(flag, f'Preview Image {i} [{step}/{total_steps}]') cv2.setWindowProperty(flag, cv2.WND_PROP_TOPMOST, 1) cv2.waitKey(1) taesd.preview = preview_function return taesd def close_all_preview(): cv2.destroyAllWindows() @torch.no_grad() def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) device = comfy.model_management.get_torch_device() latent_image = latent["samples"] if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") else: batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) noise_mask = None if "noise_mask" in latent: noise_mask = latent["noise_mask"] previewer = get_previewer(device, model.model.latent_format) pbar = comfy.utils.ProgressBar(steps) def callback(step, x0, x, total_steps): if previewer and step % 3 == 0: previewer.preview(x0, step, total_steps) pbar.update_absolute(step + 1, total_steps, None) sigmas = None disable_pbar = False if noise_mask is not None: noise_mask = prepare_mask(noise_mask, noise.shape, device) comfy.model_management.load_model_gpu(model) real_model = model.model noise = noise.to(device) latent_image = latent_image.to(device) positive_copy = broadcast_cond(positive, noise.shape[0], device) negative_copy = broadcast_cond(negative, noise.shape[0], device) models = load_additional_models(positive, negative, model.model_dtype()) sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) samples = samples.cpu() cleanup_additional_models(models) out = latent.copy() out["samples"] = samples return out @torch.no_grad() def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent, seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) device = comfy.model_management.get_torch_device() latent_image = latent["samples"] if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") else: batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) noise_mask = None if "noise_mask" in latent: noise_mask = latent["noise_mask"] previewer = get_previewer(device, model.model.latent_format) pbar = comfy.utils.ProgressBar(steps) def callback(step, x0, x, total_steps): if previewer and step % 3 == 0: previewer.preview(x0, step, total_steps) pbar.update_absolute(step + 1, total_steps, None) sigmas = None disable_pbar = False if noise_mask is not None: noise_mask = prepare_mask(noise_mask, noise.shape, device) comfy.model_management.load_model_gpu(model) noise = noise.to(device) latent_image = latent_image.to(device) positive_copy = broadcast_cond(positive, noise.shape[0], device) negative_copy = broadcast_cond(negative, noise.shape[0], device) refiner_positive_copy = broadcast_cond(refiner_positive, noise.shape[0], device) refiner_negative_copy = broadcast_cond(refiner_negative, noise.shape[0], device) models = load_additional_models(positive, negative, model.model_dtype()) sampler = KSamplerWithRefiner(model=model, refiner_model=refiner, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) samples = sampler.sample(noise, positive_copy, negative_copy, refiner_positive=refiner_positive_copy, refiner_negative=refiner_negative_copy, refiner_switch_step=refiner_switch_step, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback_function=callback, disable_pbar=disable_pbar, seed=seed) samples = samples.cpu() cleanup_additional_models(models) out = latent.copy() out["samples"] = samples return out @torch.no_grad() def image_to_numpy(x): return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]