from comfy.samplers import * class KSamplerAdvanced: SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"] def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): self.model = model self.model_denoise = CFGNoisePredictor(self.model) if self.model.model_type == model_base.ModelType.V_PREDICTION: self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True) else: self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True) self.model_k = KSamplerX0Inpaint(self.model_wrap) self.device = device if scheduler not in self.SCHEDULERS: scheduler = self.SCHEDULERS[0] if sampler not in self.SAMPLERS: sampler = self.SAMPLERS[0] self.scheduler = scheduler self.sampler = sampler self.sigma_min=float(self.model_wrap.sigma_min) self.sigma_max=float(self.model_wrap.sigma_max) self.set_steps(steps, denoise) self.denoise = denoise self.model_options = model_options def calculate_sigmas(self, steps): sigmas = None discard_penultimate_sigma = False if self.sampler in ['dpm_2', 'dpm_2_ancestral']: steps += 1 discard_penultimate_sigma = True if self.scheduler == "karras": sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) elif self.scheduler == "exponential": sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) elif self.scheduler == "normal": sigmas = self.model_wrap.get_sigmas(steps) elif self.scheduler == "simple": sigmas = simple_scheduler(self.model_wrap, steps) elif self.scheduler == "ddim_uniform": sigmas = ddim_scheduler(self.model_wrap, steps) else: print("error invalid scheduler", self.scheduler) if discard_penultimate_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas def set_steps(self, steps, denoise=None): self.steps = steps if denoise is None or denoise > 0.9999: self.sigmas = self.calculate_sigmas(steps).to(self.device) else: new_steps = int(steps/denoise) sigmas = self.calculate_sigmas(new_steps).to(self.device) self.sigmas = sigmas[-(steps + 1):] def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): if sigmas is None: sigmas = self.sigmas sigma_min = self.sigma_min if last_step is not None and last_step < (len(sigmas) - 1): sigma_min = sigmas[last_step] sigmas = sigmas[:last_step + 1] if force_full_denoise: sigmas[-1] = 0 if start_step is not None: if start_step < (len(sigmas) - 1): sigmas = sigmas[start_step:] else: if latent_image is not None: return latent_image else: return torch.zeros_like(noise) positive = positive[:] negative = negative[:] resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) calculate_start_end_timesteps(self.model_wrap, negative) calculate_start_end_timesteps(self.model_wrap, positive) #make sure each cond area has an opposite one with the same area for c in positive: create_cond_with_same_area_if_none(negative, c) for c in negative: create_cond_with_same_area_if_none(positive, c) pre_run_control(self.model_wrap, negative + positive) apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) if self.model.is_adm(): positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive") negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative") if latent_image is not None: latent_image = self.model.process_latent_in(latent_image) extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed} cond_concat = None if hasattr(self.model, 'concat_keys'): #inpaint cond_concat = [] for ck in self.model.concat_keys: if denoise_mask is not None: if ck == "mask": cond_concat.append(denoise_mask[:,:1]) elif ck == "masked_image": cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space else: if ck == "mask": cond_concat.append(torch.ones_like(noise)[:,:1]) elif ck == "masked_image": cond_concat.append(blank_inpaint_image_like(noise)) extra_args["cond_concat"] = cond_concat if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0): max_denoise = False else: max_denoise = True if self.sampler == "uni_pc": samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar) elif self.sampler == "uni_pc_bh2": samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar) elif self.sampler == "ddim": timesteps = [] for s in range(sigmas.shape[0]): timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s])) noise_mask = None if denoise_mask is not None: noise_mask = 1.0 - denoise_mask ddim_callback = None if callback is not None: total_steps = len(timesteps) - 1 ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps) sampler = DDIMSampler(self.model, device=self.device) sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False) z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise) samples, _ = sampler.sample_custom(ddim_timesteps=timesteps, conditioning=positive, batch_size=noise.shape[0], shape=noise.shape[1:], verbose=False, unconditional_guidance_scale=cfg, unconditional_conditioning=negative, eta=0.0, x_T=z_enc, x0=latent_image, img_callback=ddim_callback, denoise_function=self.model_wrap.predict_eps_discrete_timestep, extra_args=extra_args, mask=noise_mask, to_zero=sigmas[-1]==0, end_step=sigmas.shape[0] - 1, disable_pbar=disable_pbar) else: extra_args["denoise_mask"] = denoise_mask self.model_k.latent_image = latent_image self.model_k.noise = noise if max_denoise: noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) else: noise = noise * sigmas[0] k_callback = None total_steps = len(sigmas) - 1 if callback is not None: k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) if latent_image is not None: noise += latent_image if self.sampler == "dpm_fast": samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar) elif self.sampler == "dpm_adaptive": samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar) else: samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar) return self.model.process_latent_out(samples.to(torch.float32))