import modules.core as core import os import torch from modules.path import modelfile_path, lorafile_path xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0_0.9vae.safetensors') xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0_0.9vae.safetensors') xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors') xl_base = core.load_model(xl_base_filename) xl_base = core.load_lora(xl_base, xl_base_offset_lora_filename, strength_model=0.5, strength_clip=0.0) del xl_base.vae xl_refiner = core.load_model(xl_refiner_filename) @torch.no_grad() def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback): positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1) sampled_latent = core.ksampler_with_refiner( model=xl_base.unet, positive=positive_conditions, negative=negative_conditions, refiner=xl_refiner.unet, refiner_positive=positive_conditions_refiner, refiner_negative=negative_conditions_refiner, refiner_switch_step=switch, latent=empty_latent, steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, seed=image_seed, callback_function=callback ) decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent) images = core.image_to_numpy(decoded_latent) return images