import threading buffer = [] outputs = [] def worker(): global buffer, outputs import time import shared import random import modules.default_pipeline as pipeline import modules.path import modules.patch from modules.sdxl_styles import apply_style, aspect_ratios from modules.private_logger import log try: async_gradio_app = shared.gradio_root flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' if async_gradio_app.share: flag += f''' or {async_gradio_app.share_url}''' print(flag) except Exception as e: print(e) def handler(task): prompt, negative_prompt, style_selction, performance_selction, \ aspect_ratios_selction, image_number, image_seed, sharpness, base_model_name, refiner_model_name, \ l1, w1, l2, w2, l3, w3, l4, w4, l5, w5 = task loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)] modules.patch.sharpness = sharpness pipeline.refresh_base_model(base_model_name) pipeline.refresh_refiner_model(refiner_model_name) pipeline.refresh_loras(loras) pipeline.clean_prompt_cond_caches() p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt) if performance_selction == 'Speed': steps = 30 switch = 20 else: steps = 60 switch = 40 width, height = aspect_ratios[aspect_ratios_selction] results = [] seed = image_seed max_seed = int(1024*1024*1024) if not isinstance(seed, int): seed = random.randint(1, max_seed) if seed < 0: seed = - seed seed = seed % max_seed all_steps = steps * image_number def callback(step, x0, x, total_steps, y): done_steps = i * steps + step outputs.append(['preview', ( int(100.0 * float(done_steps) / float(all_steps)), f'Step {step}/{total_steps} in the {i}-th Sampling', y)]) for i in range(image_number): imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback) for x in imgs: d = [ ('Prompt', prompt), ('Negative Prompt', negative_prompt), ('Style', style_selction), ('Performance', performance_selction), ('Resolution', str((width, height))), ('Sharpness', sharpness), ('Base Model', base_model_name), ('Refiner Model', refiner_model_name), ('Seed', seed) ] for n, w in loras: if n != 'None': d.append((f'LoRA [{n}] weight', w)) log(x, d) seed += 1 results += imgs outputs.append(['results', results]) return while True: time.sleep(0.01) if len(buffer) > 0: task = buffer.pop(0) handler(task) pass threading.Thread(target=worker, daemon=True).start()