import os import torch import modules.core as core from modules.path import modelfile_path xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') xl_base = core.load_model(xl_base_filename) @torch.no_grad() def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_size=1): positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size) sampled_latent = core.ksample( unet=xl_base.unet, positive_condition=positive_conditions, negative_condition=negative_conditions, latent_image=empty_latent ) decoded_latent = core.decode_vae(vae=xl_base.vae, latent_image=sampled_latent) images = core.image_to_numpy(decoded_latent) return images