import torch import comfy.model_base import comfy.ldm.modules.diffusionmodules.openaimodel import comfy.samplers from comfy.samplers import model_management, lcm, math from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed from modules.filters import gaussian_filter_2d sharpness = 2.0 def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None): def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 if 'timestep_start' in cond[1]: timestep_start = cond[1]['timestep_start'] if timestep_in[0] > timestep_start: return None if 'timestep_end' in cond[1]: timestep_end = cond[1]['timestep_end'] if timestep_in[0] < timestep_end: return None if 'area' in cond[1]: area = cond[1]['area'] if 'strength' in cond[1]: strength = cond[1]['strength'] adm_cond = None if 'adm_encoded' in cond[1]: adm_cond = cond[1]['adm_encoded'] input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] if 'mask' in cond[1]: # Scale the mask to the size of the input # The mask should have been resized as we began the sampling process mask_strength = 1.0 if "mask_strength" in cond[1]: mask_strength = cond[1]["mask_strength"] mask = cond[1]['mask'] assert (mask.shape[1] == x_in.shape[2]) assert (mask.shape[2] == x_in.shape[3]) mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) else: mask = torch.ones_like(input_x) mult = mask * strength if 'mask' not in cond[1]: rr = 8 if area[2] != 0: for t in range(rr): mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1)) if (area[0] + area[2]) < x_in.shape[2]: for t in range(rr): mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1)) if area[3] != 0: for t in range(rr): mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1)) if (area[1] + area[3]) < x_in.shape[3]: for t in range(rr): mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1)) conditionning = {} conditionning['c_crossattn'] = cond[0] if cond_concat_in is not None and len(cond_concat_in) > 0: cropped = [] for x in cond_concat_in: cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] cropped.append(cr) conditionning['c_concat'] = torch.cat(cropped, dim=1) if adm_cond is not None: conditionning['c_adm'] = adm_cond control = None if 'control' in cond[1]: control = cond[1]['control'] patches = None if 'gligen' in cond[1]: gligen = cond[1]['gligen'] patches = {} gligen_type = gligen[0] gligen_model = gligen[1] if gligen_type == "position": gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device) else: gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device) patches['middle_patch'] = [gligen_patch] return (input_x, mult, conditionning, area, control, patches) def cond_equal_size(c1, c2): if c1 is c2: return True if c1.keys() != c2.keys(): return False if 'c_crossattn' in c1: s1 = c1['c_crossattn'].shape s2 = c2['c_crossattn'].shape if s1 != s2: if s1[0] != s2[0] or s1[2] != s2[2]: # these 2 cases should not happen return False mult_min = lcm(s1[1], s2[1]) diff = mult_min // min(s1[1], s2[1]) if diff > 4: # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much return False if 'c_concat' in c1: if c1['c_concat'].shape != c2['c_concat'].shape: return False if 'c_adm' in c1: if c1['c_adm'].shape != c2['c_adm'].shape: return False return True def can_concat_cond(c1, c2): if c1[0].shape != c2[0].shape: return False # control if (c1[4] is None) != (c2[4] is None): return False if c1[4] is not None: if c1[4] is not c2[4]: return False # patches if (c1[5] is None) != (c2[5] is None): return False if (c1[5] is not None): if c1[5] is not c2[5]: return False return cond_equal_size(c1[2], c2[2]) def cond_cat(c_list): c_crossattn = [] c_concat = [] c_adm = [] crossattn_max_len = 0 for x in c_list: if 'c_crossattn' in x: c = x['c_crossattn'] if crossattn_max_len == 0: crossattn_max_len = c.shape[1] else: crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) c_crossattn.append(c) if 'c_concat' in x: c_concat.append(x['c_concat']) if 'c_adm' in x: c_adm.append(x['c_adm']) out = {} c_crossattn_out = [] for c in c_crossattn: if c.shape[1] < crossattn_max_len: c = c.repeat(1, crossattn_max_len // c.shape[1], 1) # padding with repeat doesn't change result c_crossattn_out.append(c) if len(c_crossattn_out) > 0: out['c_crossattn'] = [torch.cat(c_crossattn_out)] if len(c_concat) > 0: out['c_concat'] = [torch.cat(c_concat)] if len(c_adm) > 0: out['c_adm'] = torch.cat(c_adm) return out def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in) / 100000.0 out_uncond = torch.zeros_like(x_in) out_uncond_count = torch.ones_like(x_in) / 100000.0 COND = 0 UNCOND = 1 to_run = [] for x in cond: p = get_area_and_mult(x, x_in, cond_concat_in, timestep) if p is None: continue to_run += [(p, COND)] if uncond is not None: for x in uncond: p = get_area_and_mult(x, x_in, cond_concat_in, timestep) if p is None: continue to_run += [(p, UNCOND)] while len(to_run) > 0: first = to_run[0] first_shape = first[0][0].shape to_batch_temp = [] for x in range(len(to_run)): if can_concat_cond(to_run[x][0], first[0]): to_batch_temp += [x] to_batch_temp.reverse() to_batch = to_batch_temp[:1] for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp) // i] if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): to_batch = batch_amount break input_x = [] mult = [] c = [] cond_or_uncond = [] area = [] control = None patches = None for x in to_batch: o = to_run.pop(x) p = o[0] input_x += [p[0]] mult += [p[1]] c += [p[2]] area += [p[3]] cond_or_uncond += [o[1]] control = p[4] patches = p[5] batch_chunks = len(cond_or_uncond) input_x = torch.cat(input_x) c = cond_cat(c) timestep_ = torch.cat([timestep] * batch_chunks) if control is not None: c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) transformer_options = {} if 'transformer_options' in model_options: transformer_options = model_options['transformer_options'].copy() if patches is not None: if "patches" in transformer_options: cur_patches = transformer_options["patches"].copy() for p in patches: if p in cur_patches: cur_patches[p] = cur_patches[p] + patches[p] else: cur_patches[p] = patches[p] else: transformer_options["patches"] = patches c['transformer_options'] = transformer_options transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None] if 'model_function_wrapper' in model_options: output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) else: output = model_function(input_x, timestep_, **c).chunk(batch_chunks) del input_x model_management.throw_exception_if_processing_interrupted() for o in range(batch_chunks): if cond_or_uncond[o] == COND: out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ o] * \ mult[o] out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] else: out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ o] * \ mult[o] out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \ mult[o] del mult out_cond /= out_count del out_count out_uncond /= out_uncond_count del out_uncond_count return out_cond, out_uncond max_total_area = model_management.maximum_batch_area() if math.isclose(cond_scale, 1.0): uncond = None cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options) if "sampler_cfg_function" in model_options: args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep} return model_options["sampler_cfg_function"](args) else: return uncond + (cond - uncond) * cond_scale def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): uc_mask = transformer_options['uc_mask'] transformer_options["original_shape"] = list(x.shape) transformer_options["current_index"] = 0 hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x.type(self.dtype) for id, module in enumerate(self.input_blocks): transformer_options["block"] = ("input", id) h = forward_timestep_embed(module, h, emb, context, transformer_options) if control is not None and 'input' in control and len(control['input']) > 0: ctrl = control['input'].pop() if ctrl is not None: h += ctrl hs.append(h) transformer_options["block"] = ("middle", 0) h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) if control is not None and 'middle' in control and len(control['middle']) > 0: h += control['middle'].pop() for id, module in enumerate(self.output_blocks): transformer_options["block"] = ("output", id) hsp = hs.pop() if control is not None and 'output' in control and len(control['output']) > 0: ctrl = control['output'].pop() if ctrl is not None: hsp += ctrl h = torch.cat([h, hsp], dim=1) del hsp if len(hs) > 0: output_shape = hs[-1].shape else: output_shape = None h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) h = h.type(x.dtype) x0 = self.out(h) alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone() alpha *= 0.001 * sharpness degraded_x0 = gaussian_filter_2d(x0) * alpha + x0 * (1.0 - alpha) x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask) return x0 def sdxl_encode_adm_patched(self, **kwargs): clip_pooled = kwargs["pooled_output"] width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) target_width = kwargs.get("target_width", width) target_height = kwargs.get("target_height", height) if kwargs.get("prompt_type", "") == "negative": width *= 0.8 height *= 0.8 elif kwargs.get("prompt_type", "") == "positive": width *= 1.5 height *= 1.5 out = [] out.append(self.embedder(torch.Tensor([height]))) out.append(self.embedder(torch.Tensor([width]))) out.append(self.embedder(torch.Tensor([crop_h]))) out.append(self.embedder(torch.Tensor([crop_w]))) out.append(self.embedder(torch.Tensor([target_height]))) out.append(self.embedder(torch.Tensor([target_width]))) flat = torch.flatten(torch.cat(out))[None, ] return torch.cat((clip_pooled.to(flat.device), flat), dim=1) def patch_all(): comfy.samplers.sampling_function = sampling_function_patched comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched