|
import modules.core as core |
|
import os |
|
import torch |
|
|
|
from modules.path import modelfile_path, lorafile_path |
|
|
|
|
|
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') |
|
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') |
|
xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors') |
|
|
|
xl_base = core.load_model(xl_base_filename) |
|
xl_base = core.load_lora(xl_base, xl_base_offset_lora_filename, strength_model=0.5, strength_clip=0.0) |
|
del xl_base.vae |
|
|
|
xl_refiner = core.load_model(xl_refiner_filename) |
|
|
|
|
|
@torch.no_grad() |
|
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback): |
|
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) |
|
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) |
|
|
|
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) |
|
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) |
|
|
|
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1) |
|
|
|
sampled_latent = core.ksampler_with_refiner( |
|
model=xl_base.unet, |
|
positive=positive_conditions, |
|
negative=negative_conditions, |
|
refiner=xl_refiner.unet, |
|
refiner_positive=positive_conditions_refiner, |
|
refiner_negative=negative_conditions_refiner, |
|
refiner_switch_step=switch, |
|
latent=empty_latent, |
|
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, |
|
seed=image_seed, |
|
callback_function=callback |
|
) |
|
|
|
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent) |
|
|
|
images = core.image_to_numpy(decoded_latent) |
|
|
|
return images |
|
|