do not send original image from client for overlay, but use (log) path on server instead
347eac7
import threading | |
buffer = [] | |
outputs = [] | |
is_working = False | |
def worker(): | |
global buffer, outputs, is_working | |
import time | |
import shared | |
import random | |
import modules.default_pipeline as pipeline | |
import modules.path | |
import modules.patch | |
from modules.sdxl_styles import apply_style, aspect_ratios | |
from modules.private_logger import log | |
try: | |
async_gradio_app = shared.gradio_root | |
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' | |
if async_gradio_app.share: | |
flag += f''' or {async_gradio_app.share_url}''' | |
print(flag) | |
except Exception as e: | |
print(e) | |
def handler(task): | |
prompt, style_selection = task | |
steps = 30 | |
switch = 20 | |
aspect_ratios_selection = '1280×768' | |
seed = random.randint(1, int(1024*1024*1024)) | |
sharpness = 10.0 | |
loras=[(modules.path.default_lora_name, modules.path.default_lora_weight), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)] | |
modules.patch.sharpness = sharpness | |
pipeline.refresh_base_model(modules.path.default_base_model_name) | |
pipeline.refresh_refiner_model(modules.path.default_refiner_model_name) | |
pipeline.refresh_loras(loras) | |
pipeline.clean_prompt_cond_caches() | |
p_txt, n_txt = apply_style(style_selection, prompt) | |
width, height = aspect_ratios[aspect_ratios_selection] | |
results = [] | |
def callback(step, x0, x, total_steps, y): | |
done_steps = step | |
outputs.append(['preview', ( | |
int(100.0 * float(done_steps) / float(steps)), | |
f'{step}/{total_steps}', | |
y)]) | |
img = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback)[0] | |
d = [ | |
('Prompt', prompt), | |
('Style', style_selection), | |
('Seed', seed) | |
] | |
for n, w in loras: | |
if n != 'None': | |
d.append((f'LoRA [{n}] weight', w)) | |
img_path=log(img, d) | |
outputs.append(['results', [img, img_path]]) | |
return | |
while True: | |
time.sleep(0.01) | |
if len(buffer) > 0: | |
is_working=True | |
task = buffer.pop(0) | |
handler(task) | |
is_working=False | |
pass | |
threading.Thread(target=worker, daemon=True).start() | |